کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل


آذر 1404
شن یک دو سه چهار پنج جم
 << <   > >>
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30          



جستجو


 



 سطح زیر کشت گندم دیم در استان فارس حدود 000/100 هکتار است که به دلیل وقوع خشکسالی های اخیر، نه تنها از وسعت آن کاسته شده بلکه میانگین عملکرد گندم نیز به کمتر از یک تن در هکتار کاهش یافته است(اداره آمار و اطلاعات وزارت جهاد کشاورزی،1387).

 منطقه کازرون – که این تحقیق در آن انجام شده است- دارای میانگین بارندگی دراز مدت سالانه 500 میلی متر است که بخش عمده ای از اراضی دیم را به خود اختصاص داده است.خاک های موجود در اراضی دیم استان دارای طبیعت آهکی (دارای بیش از 40 درصد کربنات کلسیم) بوده و از نظر مقدار ماده آلی و عناصر غذایی اصلی فقیر هستند.برای نیل به افزایش عملکرد گندم دیم و نیز امنیت غذایی جامعه، باروری محصول امری اجتناب ناپذیر است. امروزه یکی از روش های باروری محصول تأمین نمودن عناصر غذایی اصلی و عناصر کم مصرف مورد نیاز گندم جهت حصول رشد و نمو بهینه آن است. ولی به دلیل محدودیت های خاک دیمزارهای استان نظیرpH بالا، پایین بودن ماده آلی خاک، کمبود رطوبت، کاربرد کودهای شیمیایی محتوی عناصر پر مصرف و کم مصرف با اشکالاتی همراه است. مثلاً عناصر کم مصرف بعد از افزوده شدن به این خاک ها به شکل های غیر قابل جذب برای ریشه تبدیل می شوند.

  از طرف دیگر اگر چه گزارشات متعددی در زمینه تأثیر کاربرد کودهای محتوی عناصر کم مصرف آهن و روی بر روی عملکرد و اجزاء عملکرد گندم آبی در داخل کشور ارائه شده است، با این وجود نمی توان از این نتایج برای شرایط دیم استفاده نمود. چون شرایط رطوبتی خاک دیم زارها فقط به باران متکی است و پراکنش باران نیز در این مناطق یکنواخت نیست. بنابراین هدف از این تحقیق بررسی تأثیر کاربرد کلات آهن (با نشان تجارتی برکسیل آهن) و کلات روی (با نشان تجارتی لیبریل روی) به صورت محلول پاشی در مراحل ساقه    دهی و خوشه دهی بود تا به کمک نتایج حاصله بتوان تأثیر هر یک از این عناصر را به تنهایی یا تأثیر متقابل کاربرد توأم هر دو عنصر را بر روی عملکرد و اجزاء عملکرد گندم دیم رقم چمران بررسی نمود و سطح بهینه این دو کلات که به حداکثر عملکرد دانه منجر می شود را معرفی نمود.

1-1 – اهداف تحقیق

 1- بررسی تاثیر کاربرد کلات های آهن و روی به صورت محلول پاشی در شرایط دیم          (میزان رطوبت نسبی کم هوا و خشکی نیمرخ خاک) بر روی عملکرد و اجزاء عملکرد گندم

2- بررسی تاثیر کاربرد هر یک از سطوح کلاتهای آهن یا روی بر عملکرد و اجزاء عملکرد گندم دیم

3- بررسی تاثیر متقابل کاربرد کلاتهای آهن و روی بر عملکرد و اجزاء عملکرد گندم دیم

 1-2- فرضیه ها

1- کاربرد محلولپاشی توام کلاتهای روی و آهن تاثیر منفی بر صفات كمی وكیفی گندم دیم نخواهد داشت.

2- کاربرد توام محلول پاشی کلاتهای آهن روی در دو مرحله رویشی گندم می تواند بر عملکرد و اجزاء آن با تشریک مساعی اثر رشد یابنده (synergism ) داشته باشد.

  1 -3-  مبداء گندم

 گندم گیاهی است که در همه سرزمین های معتدل می روید.این گیاه از دوران کهن پیش از تاریخ شناخته شده ولی خاستگاه آن تا کنون به طور کامل روشن نشده است. واویلف،خاستگاه گندم را منحصر به یک محل نمی داند،بلکه معتقد است که گندم چند مبداء دارد. از کاوشهای باستانی نیز برمی آید که گندم از شش هزار سال پیش شناخته شده و انسان آنرا برای خوراک خود گرد آوری و کم و بیش با کشت و برداشت آن آشنایی پیدا کرده است.  گندم گیاهی است یکساله،از گروه تک لپه ها[1] و از جنس تریتیکوم[2]،گونه های بسیار خودرو و پرورش یافته دارد.گونه های خودروی آن بیشتر علف هرز بوده و ارزش خوراکی چندانی ندارد(اهدائی،1365).

 1- 4- گیاه شناسی گندم

گندم از تیره غلات گرامینه[3] و جنس تریتیکوم و دارای گونه های زیادی است که مهمترین گونه زراعی آن (Triticum  aestivum)   یا (Triticum  vulgare)است و به گندم نانوایی نیز موسوم است. این گندم شامل رقم های بی شمار زراعی است که در شرایط اقلیمی متفاوت در ایران و سراسر جهان کشت می شود(نور محمدی و همکاران،1367).

1-5- رده بندی ژنتیکی گندم

1 -5-1-گندم دیپلوئید[4] تعداد کروموزوم آنها 14=n2  می باشد و تنها گونه زراعی این گروه Triticum monococum  می باشد و دارای محور سنبله محکمتری نسبت به اجداد وحشی خود می باشد. در خاکهای نامرغوب به خوبی رشد میکند . بلندی آن70 سانتیمتر است و بیشتر به مصرف خوراک دام میرسد. (کاظمی اربط،1374).

مقالات و پایان نامه ارشد

1-5-2- گندم تتراپلوئید[5]، که تعداد کروموزوم های  آن 28=n2 است که شامل گندم دوروم[6] است. این گندم دارای دانه های سرخ یا كهربایی زرد و سفید رنگ است . دانه ها اغلب شیشه ای بوده (نشاسته سخت) گلوتن دانه  خیلی زیاد و نشاسته آن كم است. در اصفهان، كردستان و آذربایجان كشت می شود. از دوران قدیم، آنرادر خاکهای کویری اسپانیا، الجزایر، ایران، هند و روسیه می کاشته اند. از روسیه به آمریکا برده شد. تحمل آن در برابر باد و بارندگی کم،بسیار است.از آرد آن برای ماکارانی استفاده می شود(کاظمی اربط،1374).

1-5-3-گندم هگزاپلوئید[7]،دارای 42=n2 کروموزوم است و به گندم های Sativum موسومند. این گندم ها دارای انواع زراعی پوشینه دار و زراعی بدون پوشینه هستند. بخشی ازمهم ترین گندم های این گروه عبارتند ازaestivum  Triricum =  T.vulgare (گندم نانوائی)،   T.compactum  (گندم سفت). گندم گروه هگزا پلوئید دارای سه ژنوم  می باشد كه  ژنوم A  از  T.monococcum ، ژنوم  B از T.turgidum و ژنوم D  از یک علف چمنی دیپلوئید از جنس T.tauschii  ( Aegilops squarrosa)  منشاء گرفته اند(کوچکی،1376).

1-6- سطح زیر کشت و تولید گندم در ایران و استان فارس

 سطح زیر کشت گندم در ایران حدود5/6 میلیون هکتار و تولید آن حدود 12-11 میلیون تن می باشد.از کل اراضی تحت کشت گندم در کشور،36 درصد گندم آبی و 64 درصد گندم دیم را تشکیل می دهد. حدود 000/100 هکتار از اراضی زراعی استان فارس به کشت گندم دیم اختصاص می یابد، و به سبب بروز خشکسالی های اخیر، از وسعت کشت گندم و نیز عملکرد آن در واحد سطح کاسته شده است. خاک دیم زارهای استان فارس اغلب آهکی [8] است. و به دلیل مقدار زیاد کربنات کلسیم (CaCo3) دارای واکنش قلیایی (pH>7) هستند. وجود pH بالا سبب می شود که افزودن کودهای شیمیایی محتوی آهن و روی به زمین برای گیاه موثر واقع نشود، یعنی عناصر آهن و روی موجود در کودها به شکل های غیر قابل استفاده ریشه گیاه درآیند. در حقیقت هم تحرک و هم قابلیت حل دو عنصر آهن و روی کاهش می یابد(ملکوتی،1383).

1-7- تاثیر آهن در تغذیه گندم

1-7-1- نقش آهن در گیاه

 آهن با نماد شیمیایی (Fe)، یک عنصر غذایی لازم برای گیاه محسوب می شود. بارزترین نقش آهن، شرکت کردن آن در نظام های آنزیمی درون گیاه است که در آن ها “هِم” (Haem) و “هِمین” (Haemin) به عنوان گروهای پروستتیک عمل می کنند. آهن در سنتز پروتئین های ” هم ” مثل (لگ هموگلوبین، هم كاتاز-پراكسیداز) و پروتئین های غیر “هم” مثل سیتوكروم ها كه در انتقال الكترون ها در میتوكندری و كلرو پلاست نقش دارند، دخالت دارد در اینجا، آهن نقشی شبیه به نقش منیزیم (Mg) در ساختمان یورفیرین کلروفیل بازی می کند. رنگدانه های هِم، اگر چه در متابولیسم (سوخت و ساز) بسیار مهم هستند با این حال فقط 01/0 درصد کل آهن موجود در برگ های گیاه را تشکیل می دهند. بقیه آهن به صورت فسفر پروتئین فریک به نام فیتوفریتین ذخیره می شود. فیتوفریتین یک نوع ذخیره آهن است که توسط پلاستیدهای در حال رشد به مصرف نیاز فتوسنتزی می رسد. حالت دیگر آهن که در کلروپلاست یافت می شود به نام فرودوکسین است که یک پروتئین آهن غیر هِم (Haem) است که با انتقال الکترون ها در فرایندهای اکسایش-کاهش شرکت[9] می کند. بین مقدار آهن و مقدار کلروفیل برگ، همبستگی مناسبی وجود دارد و گیاهانی که از آهن کافی برخوردار هستند، کلروفیل بیشتری دارند (لیندسی، 1974 ؛ منگل و کرکبی، 1987).

1-7-2- مقدار آهن در خاک و گیاه

 عنصر آهن، 5 درصد پوسته زمین را تشکیل می دهد. انواع مواد معدنی  آهن دار شامل سیلیکات های فرومنیزیم نظیر اُولوین، اُژیت، هورنبلند و بیوتیت است. در خاک های رسوبی، اکسیدهای آهن و سیدریت یا کربنات فرو FeCo3 معمول ترین انواع کانی های اولیه به شمار می آیند. مقدار کل آهن خاک تقریباً 2 درصد یا برابر 000/20 میلی گرم در کیلوگرم خاک است. اما عرضه آهن از این مواد به طرف ریشه گیاه به قابلیت انحلال این مواد در خاک وابسته است. پس بین قابلیت جذب آهن و قابلیت انحلال آن رابطه معنی داری وجود دارد.

 از طرفی واکنش محلول خاک یا  pH تأثیر زیادی بر قابلیت انحلال کانی های آهن دار خاک دارد. برای این که جریان توده ای [10] محلول خاک بتواند آهن کافی را در اختیار ریشه گیاه قرار دهد، بایستی انحلال پذیری آهن کل بالا باشد که این پدیده فقط، در pH برابر 3 امکان پذیر است. با افزایش pH محلول خاک از 3 به 4، فقط یک درصد نیاز گیاه به آهن تأمین می شود. بنابراین با در نظر گرفتن سطوح pH حاکم در خاک های مناطق خشک و نیمه خشک و حرکت آهن در محلول خاک به صورت پخش[11] مقدار آهن معدنی خیلی پایین تر از میزان آهن مورد نیاز گیاهان است. (چاپمن و همکاران، 1971).  به طور كلی آهن در خاك های قلیایی به صورت هیدرواكسید آهن و یا به صورت فسفا ت آهن رسوب یافته و برای گیاه غیر قابل جذب می گردد. به این صورت علایم كمبود می تواند در گیاه ظاهر گردد، چون آهن قابل جذب، از دسترس گیاه خارج شده است. برای جلوگیری از بروز علایم كمبود ، نمك های آهن را باید به كرات به محیط اضافه كرد. البته دانشمندان به این موضوع پی برده اند كه اگر آهن را به همراه اسید سیتریک یا اسید تارتاریک به محیط گیاه اضافه كنند، این مواد از رسوب آهن در محیط جلوگیری می كنند. این تركیبات اسیدی را عامل كلاته كننده (Chelating agents) می نامند، البته آنها با كاتیون هایی مثل آهن و كلسیم، كمپلكس محلول تشكیل می دهند در محلول های غذایی مدرن از اتیلن دی آمین تترااستیک اسید (EDTA) یا  دی اتیلن تری آمین پنتااستیک اسید (DTPA) یا اسید پنتیک به عنوان عامل كلاته كننده استفاده می كنند. استفاده مكرر از تركیبات معدنی آهن و یا استفاده ار كلاته های ذكر شده در شرایط دیم در فصل بهار كه هوا گرم بوده و رشد و نمو  گیاه سریع می باشد، به كارگیری آنها در شرایط دیم، در زمین های خشك،  بجز در شرایط استثنایی تقریبأٌ غیر ممكن می باشد. از این رو بهترین راه برای برطرف كردن كمبود آهن محلول پاشی بر روی برگ گیاه می باشد.(سیخون،2003).

مقدار آهن در بافت های سبز گیاه در مقایسه با مقدار عناصر پر مصرف پایین و به طور معمول در حد 100 میلی گرم در کیلوگرم ماده خشک است. مقدار آهن در دانه غلات اغلب از این مقدار نیز کمتر است به طوری که برای دانه گندم در حدود 64-20 میلی گرم در کیلوگرم دانه است (فروسارد و همکاران، 2000). به این ترتیب کل مقدار آهن خاک معمولاً بیش از نیازهای گیاه است (منگل و کرکبی، 1987)، ولی به دلیل قابلیت حل پایین کانی های آهن دار قادر به تأمین نیاز گیاهان از جمله گندم نیست.

1-7-3- کلات های آهن

کودهای شیمیایی آهن دار، مدتی پس از قرار گرفتن در خاك به شکل غیر قابل جذب برای گیاه تبدیل می شوند. چون قابل استفاده شدن عناصر کم مصرف نظیر آهن و روی در خاک های آهکی به سبب بالا بودن pH محلول خاک کاهش می یابد، امكان كود دهی از طریق خاك خشك، در كشت های دیم گندم پس از فصل بارندگی با محدودیت زیادی روبرو می باشد، از این رو استفاده  از کودهای عناصر یاد شده از طریق محلول پاشی بر روی برگ تنها راه بر طرف كردن احتیاج های گیاه می باشد. باید متذكر شد كه استفاده از تركیبات كلات آهن در محلول پاشی، دارای مزیت های زیادی نسبت به تركیبات معدنی این عنصر می باشد. کلات آهن، ترکیب کمپلكس آلی حاوی فلز آهن می باشد.در حقیقت، بنیان آلی کلات، دارای تعدادی پیوند کوالانتی است که کاتیون آهن را در خود نگه داشته است و نتیجه این پیوند یک ساختار حلقوی خیلی قوی است (منگل و کرکبی، 1987). کلات هایی که در خاک های آهکی به کار برده می شوند، به میزان کمتری تحت تأثیر شرایط نامطلوب خاک نظیر غلظت زیاد یون های Ca2+، HCo3-، POH3 و pH بالا و یا هیدرولیز میکروبی قرار می گیرند ساز و کارهای لازم در جذب عناصر کلات شده مانند آهن و روی توسط گیاه به طور کامل روشن نشده است و نیاز به مطالعه بیشتری دارد. با این وجود معلوم شده است که عامل کلات کننده و کاتیون فلزی همراه آن به یک میزان جذب ریشه ها نمی شوند. چنان چه pH محلول خاک اطراف ریشه ها بالا باشد، برخی از عوامل کلات کننده در محلول اطراف ریشه باقی مانده، در حالی که کاتیون فلزی آن جذب ریشه می شود                      (کانترا و همکاران، 2002).

مصرف کلات ها جهت مرتفع کردن کمبود آهن از اوایل دهه 1950 میلادی آغاز شد و با تولید و معرفی فرآورده های مختلف، کاربرد آن افزایش یافت. کارکرد این کلات ها در شرایط مختلف شیمیایی و گیاهی با بهره گرفتن از روش های مختلف آزمایش شده است. کلات های آهن مصنوعی برای جذب گیاه کاملاً موثر هستند و براساس پایداری شان در خاک، حلالیت در آب، توانایی جذب شدن به ریشه گیاه و تناسب آن ها برای محلول پاشی بر روی شاخ و  برگ یا مصرف در خاک توصیف می شوند. این خصوصیات براساس شرایط خاک و خواص آن ها برای محصولات مختلف استوار است (میر سید حسینی و همکاران، 2008). 

براساس گزارش های موجود، کاربرد کلات آهن (Fe-EDDHA) در خاک های آهکی، موجب افزایش غلظت آهن در اندام های گیاه شده است. حلالیت آهن در خاک به pH محلول خاک وابسته است و در محدوده 5/8-4/7= pH ، حلالیت آهن، حداقل است (منگل و کرکبی، 1987). پس در خاک های آهکی ایران، کلات های آهن با ثبات و پایداری بیشتر جهت تأمین نیاز آهن محصولات گیاهی مختلف لازم است. نتایج حاصل از خوابانیدن[12] مخلوط خاک و کلات آهن در شرایط دمائی و رطوبتی مطلوب نشان داد که کارایی این ترکیبات آلی از نظر جذب توسط گیاه به اثرات متقابل آنها با ذرات خاک و یا رها شدن فلز آهن از عامل کلات کننده مربوط است    (میرسید حسینی و همکاران،2008).

نتایج حاصل از آزمایش های انجام شده در ارتباط با مقادیر واقعی محتوی آهن در کلات های تولیدی و مقادیر مندرج در بروشورهای این محصولات، نشان داد که این دو با یکدیگر تفاوت دارند. به تعبیر دیگر، ارزیابی صحیح کفایت آهن یک کلات جهت برطرف کردن کلروز آهن[13]، نیاز به وضعیت تغذیه ای آهن گیاه مورد بررسی طی دوره معالجه دارد. بهترین روش برای تشخیص کمبود عناصر غذایی در گیاه، تجزیه مقدار آن عنصر در برگ ها است (سیخون، 2003).

خواص فیزیکو – شیمیایی کودهای آلی به ویژه کلات های آهن، از طریق آزمون های استاندارد تعیین می شود و معمولاً به وسیله ی بروشورهایی به همراه محصول عرضه می شود. این اطلاعات اگر چه در انتخاب و استفاده از کودهای مصنوعی سودمند است، اما برای مقایسات کیفی و زراعی، کافی نیستند. به همین دلیل انجام آزمایش های زراعی و کنترل کیفیت آن ها در خاک یا با روش محلول پاشی بر روی شاخ

موضوعات: بدون موضوع  لینک ثابت
[جمعه 1399-10-19] [ 02:48:00 ب.ظ ]




استفاده از فاضلاب به عنوان یک منبع غذایی گیاهی در تولیدات زراعی و یا به منظور حاصلخیزکردن خاک‌ها ازقدیم الایام در برخی نواحی آسیاه معمول بوده است. اما اطلاعات مدون در این زمینه و بخصوص در مورد کاربرد پساب در کشاورزی مربوطه به سال 1351 در بنزولای آلمان (جی هارد؛1959 و روچینگ، 1911) و سال 1650 در ایدرن بورف اسکاتلند است (استنبرینگ، 1975). با توسعه روش‌های تصفیه فاضلاب، توجه به استفاده از پساب حاصله از تصفیه خانه‌ها در کشاورزی افزایش پیدا کرد (چک، 1966). بخصوص این که برخی از متخصصان براین باورند که بهترین روش برای دفع پساب پخش آن در اراضی کشاورزی است. زیرا با این روش چرخه مواد غذایی تکمیل شده و عناصری که در اثر زراعت از خاک خارج شده است دوباره به آن بازگردانده می‌شود (چک، 1964)، از طرف دیگر وارد ساختن پساب به خاک خطر آلودگی محیط و بخصوص رودخانه را نیز کاهش می‌دهد (ادن و همکاران، 1977). بنابراین ایده اولیه استفاده از پساب در کشاورزی به دو دلیل عمده شکل گرفت که عبارتند از: 1) جلوگیری از آلوده شدن رودخانه‌ها 2) استفاده از مواد غذایی موجود در آن برای زراعت. بتدریج موضوع حفاظت آب و استفاده مجدد از آن در مناطق کم آب نیز به آن اضافه شد. گرچه این سه دلیل هنوز هم به قوت خود باقی می‌باشند اما پیشرفت‌های علمی، ملاحظات اقتصادی و بخصوص تجاربی که تا به حال کسب شده است در پاره‌ای موارد مشوق مردم در استفاده از پساب برای زراعت و در مواردی مانع از کاربرد آن می‌باشند. از اواخر سال 1800 و اوایل قرن حاضر استفاده از پساب بتدریج در بسیاری از کشورهای اروپا گسترش پیدا کرد. گیاهان بقولات در توسعه کشاورزی دنیای جدید خیلی زود ظاهر شده‌اند و از قدیمی‌ترین نباتاتی هستند که مورد کشت و کار انسان قرار گرفته‌اند (مجنون حسینی، 1372). در بین حبوبات از نظر سطح زیر کشت و ارزش اقتصادی مقام اول متعلق به لوبیاست (کوچکی و بنایان اول، 1383). این گیاه 7-4 هزار سال قبل از میلاد مسیح در مکزیک و بین یک هزار تا سه هزار سال قبل از میلاد توسط بومیان آمریکای غربی کشت و کار می‌شده است و با کشف قاره آمریکا زراعت لوبیا در دنیا گسترش یافت (مجنون حسینی، 1372 ). لوبیا یکی از حبوبات عمده در دنیا محسوب می‌شود که دارای 25-20 درصد پروتئین و 56-50 درصد کربوهیدرات است و در بسیاری از کشورهای در حال توسعه به عنوان یکی از منابع مهم پروتئین گیاهی مورد استفاده قرار می‌گیرد (مجنون حسینی، 1372 ). لوبیا دارای رشد محدودی است و به مجرد ظاهر شدن گل‌ها بر روی ساقه، رشد آن متوقف می‌شود. کشت لوبیا در مناطق گرمسیر و پر باران مناسب نبود. ولی در مناطق گرم و معتدل با مقدار بارندگی متوسط می‌توان اقدام به کشت آن نمود (مجنون حسینی، 1372). تمام گونه‌های لوبیا متعلق به دو جنس عمده است. جنس Phaseolus که شامل گونه‌های بذر درشت آمریکایی است و جنس vigna که شامل گونه‌های بذر ریز آسیایی است. گونه‌های آمریکایی، بومی آمریکا و گونه‌های آسیایی بومی جنوب آسیا هستند، گونه‌های آمریکایی، دارای غلاف‌هایی پهن با نوک بلند بود. و دارای تعداد محدودی بذر در هر غلاف (4 تا 8 عدد) اما بذرها درشت می‌باشند. گونه‌های آسیایی دارای غلاف‌های کوچک (حداکثر به طول 10 سانتیمتر) و استوآن‌ های هستند. در داخل هر غلاف تعداد زیادی بذر (تقریباً 20 عدد) وجود دارد (کوچکی و بنایان اول، 1383).

1-2- ضرورت اجرای آزمایش

پس از غلات، حبوبات دومین منبع مهم غذایی بشر است. یکی از مهمترین حبوبات در جهان لوبیاست و از لحاظ سطح زیر کشت در بین حبوبات مقام اول را دارد (کوچکی و بنایان اول، 1383). از دیدگاه کارشناسان تولیدات کشاورزی، افزایش تولید غذا تنها راه حل مشکل گرسنگی است و به‌ ویژه در کشورهای در حال توسعه، لازم به سرمایه‌گذاری بیشتر در امر تولید غذا می‌باشد. چنانچه قرار باشد عرضه غذا به صورت کنونی انجام شود، این کشورها می‌بایست طی 30 سال آینده حداقل 60 درصد به تولیدات کشاورزی خود بیافزایند. افزایش جمعیت جهان با نرخ 7/1 درصد نشان داده که سالانه بیش از 90 میلیون نفر به مصرف‌کنندگان محصولات کشاورزی در جهان افزوده می‌شود. بر این اساس تولید غذا میبایست به طور مداوم افزایش یابد تا از کمبودهای غذایی جلوگیری گردد. طی سال‌های گذشته، بازدهی محصولات کشاورزی به طور چشم‌گیری افزایش یافته است. این افزایش مدیون عوامل مختلف از جمله روش های مناسب مدیریت مزرعه، نظامهای تولیدی، کاربرد فنون جدید مبارزه با آفات و بیماری‌ها و استفاده بهینه از آب بوده است. در نواحی خشک و نیمه خشک مانند ایران، یکی از عوامل بسیار مهم در افزایش بازدهی محصول، تأمین آب مورد نیاز گیاه در یک نظام پایدار میباشد. آب یکی از منابعی است که در تولید محصولات کشاورزی نقش مهمی را بازی می‌کند و در صورتی که به طور صحیح مدیریت نشود عامل محدودکننده تولید پایدار در مناطق خشک خواهد بود. با توجه به خشکسالی‌های اخیر و برداشت بی رویه از منابع آب‌های زیر زمینی، در آینده‌ای نه چندان دور اکثر قنوات، چشمه‌ها و چاه‌ها خشک خواهند شد. لذا دو راه حل برای چاره‌جویی موارد یاد شده پیش رو قرار دارد. 1. کاهش سطح زیر کشت 2. استفاده بهینه از منابع آبی و به‌کارگیری منابع غیر متعارف آب. کاهش سطح زیر کشت از نظر سیاسی، اجتماعی و اقتصادی با توجه به بحران جمعیت دارای عوارض گسترده‌ای است. بنابراین جهت پایداری تولید راه حل دوم منطقی میباشد. خشک‌سالی‌هایی که ظرف سال‌های اخیر به وقوع پیوسته، موجب شده تا منابع موجود آب شیرین به ویژه در مناطق خشک دچار نقصان گردد. در کشور ما برداشت آب از منابع آب زیرزمینی در مقایسه با سایر کشورها به مراتب بیشتر بوده و هم اکنون در شرایطی هستیم که از لحاظ منابع آب شیرین کمبود داریم و در دراز مدت، بحران منابع آب به صورت یک مساله جدی مطرح خواهد شد. از سوی دیگر افزایش جمعیت به ویژه در مناطق شهری، باعث تولید حجم بالایی از پساب فاضلاب می‌گردد که با روند فصلی دفع فاضلاب، مشکلات زیست محیطی فراوانی را در اطراف این نقاط ایجاد خواهد نمود. بنابراین توجه به منابع غیرمتعارف آب از جمله استفاده از آب فاضلاب تصفیه شهری یک ضرورت اجتناب ناپذیر می‌باشد و لازم است با انجام آزمایشات لازم در خصوص چگونگی استفاده از این منابع آبی جهت حفظ محیط زیست، ذخیره منابع آب‌های زیر زمینی و دستیابی به توسعه پایدار گام برداشت. استفاده از پساب فاضلاب شهری به عنوان یکی از منابع غیر متعارف آب، در سال‌های اخیر مورد توجه قرار گرفته است. بهترین شیوه دفع آب فاضلاب، پس ازانجام مراحل تصفیه، به‌جای آزادسازی آن در رودخانه‌ها و آلودگی محیط زیست، کاربرد آن در کشاورزی است. لوبیا از خانواده حبوبات كه در بعضی فرهنگ‌ها به ‌عنوان گوشت فقرا شناخته شده و یکی از گیاهان مهم زراعی دنیا بوده و تاکنون تحقیقات کمی در زمینه اثرات پساب بر روی رشد این گیاه صورت گرفته است که ضرورت مطالعه آن در ایران با توجه به نقش تغذیه‌ای آن حائز اهمیت است. از آنجائی ‌كه لوبیا از جمله محصولات مهمی است كه در یاسوج کشت میگردد و آب مصرفی و مورد نیاز آن بسیار زیاد و در سال‌های اخیر منابع آبی به‌ دلیل خشكسالی‌های پی در پی كاهش یافته، لذا با توجه به وجود یک واحد تصفیه خانه فاضلاب شهری در منطقه یاسوج، ضروری است تحقیقات لازم در خصوص چگونگی استفاده از آب فاضلاب در امر آبیاری مزارع لوبیا انجام تا در صورت موفقیت آمیز بودن این موضوع، در خصوص تأمین بخشی از آب مورد نیاز مزارع از طریق پساب فاضلاب شهری اقدام و این امر در سطح وسیع اجرا گردد. (کوچکی و بنایان اول، 1383).

13- فرضیه‌ها

آبیاری با پساب فاضلاب شهری اثر معنیداری بر رشد ارقام لوبیا دارد.

    1. استفاده از آب فاضلاب تصفیه شهری در آبیاری لوبیا باعث افزایش عملكرد دانه می‌گردد.
    1. به‌کارگیری آب فاضلاب جهت آبیاری مزارع لوبیا باعث افزایش عملكرد بیولوژیكی می‌گردد.
  1. ارقام مختلف لوبیا عکس العمل متفاوتی نسبت به استفاده از پساب فاضلاب شهری دارند.

1-4– اهداف

پایان نامه

بررسی و مقایسه اثر پساب فاضلاب شهری بر رشد دو رقم لوبیا.

    1. تعیین عکس العمل دو رقم لوبیا از نظر استفاده از آب فاضلاب جهت نیل به حداکثر عملکرد دانه.
    1. بررسی اثر آب فاضلاب شهری بر ارقام لوبیا جهت نیل به حداكثر عملكرد بیولوژیكی
  1. بررسی اثر استفاده از آب فاضلاب در جهت كاهش یا عدم استفاده از کودهای شیمیائی.

1-5 – تاریخچه کشت و پیدایش لوبیا

یادداشت‌های تاریخی نشان می‌دهند که کشت لگوم‌ها از حدود 6 هزار سال قبل شروع شده است. قدمت ارقام پاکوتاه لوبیا به سن مجسمه برنز بر می‌گردد (میرشکاری، 1380). مبدأ لوبیا معمولی احتمالاً قسمت‌های حاره آمریکای جنوبی در مکزیک و گواتمالا است. واویلوف با توجه به تغییرات ژنتیکی زیادی که در آمریکای مرکزی و جنوب مکزیک یافت شده این منطقه را مبدأ لوبیا می داند. لوبیا 7-4 هزار سال قبل از میلاد مسیح در مکزیک و بین یک هزار تا سه هزار سال قبل از میلاد توسط بومیان آمریکای غربی کشت و کار می‌شده است و با کشف قاره آمریکا زراعت لوبیا در دنیا گسترش یافت. در قرن 16 لوبیا به اروپا آورده شد. بعداً توسط اسپانیائی‌ها و پرتغالی‌ها به انگلستان و از آن جا به افریقا و سایر نقاط دنیای قدیم برده شده است. و هم اکنون نیز در سطح گسترده بصورت کشت آبی (فاریاب)، در مناطق مدیترآن‌ های کشت می‌شود. لوبیا یکی از حبوبات عمده در دنیا محسوب می‌شود که دارای 25-20 درصد پروتئین و 56-50 درصد کربوهیدرات است و در بسیاری از کشورهای در حال توسعه به عنوان یکی از منابع مهم پروتئین گیاهی مورد استفاده قرار می‌گیرد (مجنون حسینی، 1372). سطح زیر کشت آن در سال 1369 در دنیا بالغ بر 27 میلیون هکتار بوده که با عملکردی معادل 568 کیلوگرم در هکتار مجموعاً 5/15 میلیون تن تولید دارد. برزیل، هندوستان، مکزیک و ایالات متحده آمریکا از تولید کنندگان عمده این محصول می‌باشند. آسیا و آمریکا به ترتیب با بیش از 40 و 30 درصد بالاترین سطح زیر کشت را بخود اختصاص داده‌اند. سطح زیر کشت لوبیا در آفریقا (5/2 میلیون هکتار) و اروپا (2 میلیون هکتار) چشمگیر نیست. سطح زیر کشت لوبیا در برزیل بیش از 4، مکزیک 5/1، بوراندی 3/0 و یوگسلاوی سابق 4/0 میلیون هکتار می‌باشد (مجنون حسینی، 1372).

1-6- تولید لوبیا در مناطق مختلف جهان

طبق آمار منتشر شده FAO در سال 2004سطح زیر کشت کل گیاهان بقولات که به منظور تولید دانه کاشته می‌شوند حدود 18 میلیون هکتار (13 درصد سطح زیر کشت کل غلات) و محصول آن‌ ها بین 43 تا 44 میلیون تن است. پس از جنگ جهانی دوم سطح زیر کشت و تولید بذر حبوبات همسان با غلات افزایش نیافت. برای مثال در طی چند سال پس از جنگ جهانی، تولید گندم و برنج دو برابر شد (از 315 میلیون به 647 میلیون تن رسید)، حال آن که حبوبات تنها 26 درصد افزایش یافتند. اما اضافه تولید گیاهان به دلیل افزایش سطح زیر کشت آن‌ ها بود. از سال 1945 به بعد، سطح زیر کشت جهانی لوبیا تقریباً دو برابر شده است (از 12 به 23 میلیون هکتار افزایش یافته) و تولید دانه از 7 به 11 میلیون تن رسیده است. بزرگ‌ترین کشورهای تولید کننده لوبیا در آسیا، چین، هندوستان، سریلانکا، پاکستان، برمه، ویتنام و تایلند و در آمریکا، برزیل و مکزیک است و 75 درصد سطح زیر کشت کل جهان در این دو قاره قرار دارد. 80 درصد تولید بذر نیز در این مناطق متمرکز شده است. سطح زیر کشت لوبیا در آفریقا (تانزانیا، بروندی، زئیر، اتیوپی، الجزایر) بالغ بر 5/2 میلیون هکتار است و تقریباً 3 میلیون هکتار از زمین‌های اروپا مخصوصاً ایالات بالکان، رومانی، یوگسلاوی و بلغارستان زیر کشت لوبیا است (کوچکی و بنایان اول، 1383).

در کشور ما طبق آمار وزارت جهاد کشاورزی در سال 88-1387، سطح کل زیر کشت حبوبات 868756 هکتار بوده است که از این لحاظ استان کرمانشاه با 95/15 درصد رتبه اول و استان بوشهر با 0% رتبه آخر را به خود اختصاص داده اند. میزان کل تولید حبوبات کشور 507717 تن است که استان فارس با

موضوعات: بدون موضوع  لینک ثابت
 [ 02:47:00 ب.ظ ]




1-1-کلیات

شرایط امروز جهان از نظر تولید محصولات كشاورزی و تغذیه جهانی بیش از هر زمانی در گذشته، پیچیده و بغرنج شده است. برای تأمین امنیت غذای بشر باید تولید محصولات كشاورزی افزایش یابد. افزایش تولید با افزایش سطح زیر كشت یا با افزایش عملكرد در واحد سطح میسر می‌شود كه گزینه اول بسیار محدود است و این امر سبب توجه هرچه بیشتر به افزایش عملكرد در واحد سطح گردیده است.

گندم بیش از همه­ی گیاهان دیگر در جهان كشت می­ شود و در جهان درهیچ ماهی از سال وجود ندارد كه در آن محصول گندم بدست نیاید و یا كشت نشود. در دنیای امروز گندم نه تنها یک ماده غذایی اساسی و مهم است بلكه از لحاظ سیاسی نیز از اهمیتی هم پایه نفت وحتی برتر از آن برخودار است (بهنیا، 1373). در سطح دنیا نزدیک به 52% زمین های قابل كشت دنیا به كشت غلات اختصاص دارد كه 3/1 این مقدار زیر كشت گندم است (امام، 1383). گندم مهمترین گیاه زراعی روی زمین است (1976 Martin,). گندم از نظر میزان تولید، مهمترین گیاه زراعی در جهان بوده و تولید آن در سال 2010 به حدود 674 میلیون تن رسیده است (FAO,2010). ایده مصرف كودهای شیمیایی یكی از راهكارهای افزایش عملكرد است. در سال‌های اخیر مصرف كودهای شیمیایی به صورت غیر معقول افزایش یافته است، به طوری كه در سال  1998 مصرف این كودها به  365 میلیون تن در سال رسیده است، كه با رشدی 65/3 برابری نسبت به چهل سال پیش روبرو است. اگر روند مصرف كودهای شیمیایی به همین روال ادامه یابد، زندگی بشر در آینده‌ای نزدیک با مشكلات عدیده‌ای مواجه خواهد شد. این معضل در كشورهای جهان سوم بیشتر به چشم می آید.

كشور ما نیز به دلیل شرایط آب و هوایی حاكم بر آن از جمله كمبود بارندگی و نوسانات زیاد آن، دارای اكوسیستم شكننده­ای است. از دیگر سو بهره ­برداری از اراضی كشاورزی به صورت غیر اصولی در حال انجام است. یكی از راهكارهای حل این مشكل، تغییر مدیریت كشاورزی غیر اصولی رایج، به مدیریت پایدار كشاورزی است. كشاورزی پایدار مدیریتی است كه ضمن برخورداری از پویایی اقتصادی، می تواند موجب بهبود وضعیت محیط زیست و استفاده بهینه از منابع موجود شود. علاوه بر این كشاورزی پایدار با رعایت اصول اكولوژیكی می‌تواند ضمن ایجاد توازن در محیط زیست، زمینه بهره وری طولانی‌تری را برای انسان فراهم سازد. یكی از اركان كشاورزی پایدار استفاده از كودهای زیستی در بوم نظام‌های زراعی با هدف حذف یا كاهش مصرف كودهای شیمیایی است. كودهای زیستی شامل مواد نگهدارنده‌ای با جمعیت متراكم یک یا چند نوع ارگانیسم مفید خاكزی و یا به صورت فراورده‌های متابولیک این موجودات است كه به منظور تأمین عناصر غذایی مورد نیاز گیاه در بوم نظام زراعی به كار می‌روند. اولین كود زیستی درسال 1895 در آمریكا با نام نیتراژین تولید شد. بعد از آن كودهای بیولوژیكی متفاوتی به صورت عمومی و خاص جهت محصولات كشاورزی تولید گردید. اما به دلیل اثرات سریع­تر كودهای شیمیایی و سهولت كاربرد و قیمت نسبتاً ارزان، موجب كم توجهی به استفاده از كودهای زیستی گردید. اما در سی سال اخیر آنچه ضرورت تغییر در نظام­های متداول را توجیه می­كند و حركت به سوی نظام‌های كشاورزی پایدار، از جمله سیستم­های  جایگزین در راستای كشاورزی پایدار و ارگانیگ را تسریع می‌كند، شامل مواردی از جمله بروز مسائل زیست محیطی به دلیل استفاده از مواد شیمیایی و آثار سوء آنها بر كیفیت مواد غذایی، تخلیه منابع غیر تجدید شونده مثل انرژی فسیلی و منابع سنگ فسفات، آلودگی منابع آب به وسیله نهاده‌های شیمیایی، كاهش تنوع زیستی، كاهش میزان باروری خاك و افزایش فرسایش خاك می‌‌باشد.

در مزارع، فسفات به شكل كودهای آلی و یا كودهای شیمیایی فسفاته به خاك اضافه می شود.ظرفیت تثبیت فسفر درخاكهای مختلف با توجه به خصوصیات فیزیكی ،شیمیایی،زیستی، اقلیم ومدیریت زراعی متغیر است.(آستارایی، 1375).قابلیت دردسترس بودن فسفر بستگی به عوامل زیادی چون PH ، تهویه خاك، رطوبت ، دما، میزان ماده آلی، مقدارآهن، الومینیوم و منگنز محلول وغیرمحلول، نوع ماده حاوی این عنصر، فعالیت ریزسازواره ها و روش های زراعی دارد. (بای بوردی، 1379). در اثر كمبود فسفر رنگ اندامهای هوایی گیاه سبز تیره گردیده و رشد آن كند خواهد شد و برگها از قسمت نوك به تدریج می میرند و این وضعیت به طرف قاعده برگ پیشروی می نماید. (خدابنده، 1382). تثبیت فسفر در خاكهای رسی نسبت به خاكهای شنی بیشتر است. اندازه ذرات كود شیمیایی در تثبیت فسفر تاثیر دارد، هر چه اندازه ذرات بزرگتر باشد میزان تثبیت فسفر موجود در آن بیشتر است.

كودهای زیستی، كودهای حاوی ریزسازواره های مفید در تغذیه گیاه می باشند كه می توانند مشتمل بر گروه های مختلف از قبیل باكتریها، قارچها، اكتینومیست ها و مانند آن باشند. امروزه استفاده از این كودها در جهت گام برداشتن به سوی كشاورزی پایدار واستفاده از اثرات مفید آنها رو به افزایش است. (آستارایی و كوچكی، 1375). در دسترس بودن فسفر برای گیاهان تاحد زیادی به شرایط زیستی و شیمیایی بستگی دارد كه در خاك رخ می دهد . در عرصه عمل ،تثبیت سریع كودهای شیمیایی فسفره تحت شرایط موجود خاك به فرم های غیر محلول مشكل جدی است. (Shekher et al, 2000).

در طبیعت گروهی از ریزسازواره های حل كننده ی فسفات وجود دارند كه رها سازی تدریجی فسفر و تبدیل آن به شكل قابل جذب گیاه نیاز به كودهای فسفاته شیمیایی را كاسته و كارآیی آنرا بالا می برند. (بای بوردی1379، آستارایی، 1375). یكی از سازوكارهای تبدیل فسفات به شكل معدنی و محلول،ترشح اسیدهای آلی مانند اسیدهای استیك، پروپیونیك، لاكتیك، فوماریك، سوكسنیک است. (آستارایی 1375، Rodriguez and Fraga, 1999).

جداسازی باكتریهای حل كننده فسفات واستفاده از آنها به عنوان كود به عنوان راهكاری برای كاهش مصرف كودهای شیمیایی و بنابراین كاهش آلودگی زیست محیطی به شمار می رود.

در ایران تولید كودهای زیستی با فاصله زمانی حدود 100 ساله نسبت به كشورهای توسعه یافته آغاز شده است، یكی از عناصر پر مصرف در گیاهان فسفر است. با اینكه مقدار متوسط كل فسفر در اغلب خاك‌ها (12/0%) زیاد است. اما به دلیل تثبیت آن به علت تغییرات اسیدیته خاك از حدود خنثی (كه دارای بیشترین حلالیت است) به صورت نا‌محلول در می آید. اغلب خاك های مناطق خشك و نیمه خشك ایران آهكی می‌باشد كه در نتیجه تثبیت فسفر خاك افزایش می یابد. عوامل یاد شده باعث كاهش قابلیت جذب فسفر در خاك شده است كه به طبع آن سبب افزایش مصرف كودهای شیمیایی فسفره می‌شود. افزایش مصرف كودهای فسفره همراه با افزایش تثبیت آنها در خاك می‌باشد، كه با وجود مصرف كودهای فسفره كمبود آن در محصولات زراعی مشاهده می‌شود. تنوع گیاهی نیز از نظر قدرت جذب فسفر دخیل است به گونه‌ای كه گیاهان دارای ریشه گسترده نسبت به گیاهان دارای ریشه سطحی از نظر جذب فسفر كارآمد‍‍‌تر هستند. اکثر خاکهای ایران داری کمبود فسفر می­باشد که این کمبود  به وسیله مصرف کودهای شیمیایی فسفاته می­ شود. میزان مصرف کودهای شیمیایی فسفر در ایران در حدود 750 هزار تن در سال می­باشدکه 250 هزار تن از این مقدار در داخل تولید وبقیه آن با واردات این کود جبران می­ شود

تولید كودهای شیمیایی فسفره به دلیل هزینه‌های زیاد تولید، كاهش منابع خاك فسفات، تولید مواد سمی انبوه در حین فرآوری كودهای فسفره و عناصر سنگین سمی موجود در كود فسفره (مانند كادمیم) عواملی هستند كه تولید كودهای فسفره را محدود نموده است.

استفاده از كودهای زیستی به عنوان مكمل یا جایگزین كودهای شیمیایی می تواند بسیاری از مشكلات ناشی از مصرف  كودهای شیمیایی را برطرف سازد. در سال‌های اخیر منابع كود بیوفسفات (خاك فسفات، گوگرد، ماده آلی و ریزجاندارن) و بیوفسفر (ریز­جانداران و مواد نگه­دارنده) با كیفیت و قیمت نسبتا مناسب و عوارض زیست محیطی كمتر در دسترس قرار گرفته است. علاوه بر این سهم عمده‌ای از كودهای فسفره مورد استفاده در كشور، وارداتی بوده كه با توسعه‌ی مصرف كودهای زیستی صرفه جویی ارزی قابل توجهی را فراهم می‌سازد.

1-1- هدف از اجرای این پژوهش

1- بررسی اثر كود فسفات بارور-2 بر عملكرد گندم رقم الوند

2- بررسی روش های مختلف كاربرد كود فسفات بارور-2 بر عملكرد گندم رقم الوند

پایان نامه و مقاله

3- بررسی اثر كود فسفات بارور-2 بر میزان مصرف كودهای شیمیایی فسفاته

1-2- فرضیات پژوهش

 1- كود زیستی فسفات بارور-2 موجب افزایش عملكرد می­ شود.

2- كود زیستی فسفات بارور-2 موجب مقاومت به ورس در گیاه می­ شود.

3- كود زیستی فسفات بارور-2 باعث كاهش مصرف كودهای شیمیایی فسفاته می­ شود.   

فصل دوم: بر تحقیقات انجام شده

2-1- گندم و اهمیت آن

گندم به عنوان یكی از غلات مهم در تغذیه مردم جهان محسوب می­ شود. تولید گندم در جهان در مرحله اول به منظور تغذیه انسان و در درجه دوم برای تغذیه دام و همچنین مصارف صنعتی می­باشد. در دنیای امروز گندم نه تنها یک ماده غذایی اساسی و مهم است، بلكه از لحاظ سیاسی نیز از اهمیتی بالا، هم پایه نفت و حتی مهمتر از آن برخوردار است و باید گفت كه سلاح گندم از سلاح نظامی قدرتمندتر و با اهمیت­تر می­باشد. كمبود مواد غذایی به دلایل مختلف از جمله افزایش جمعیت، پایین بودن كارایی تولید و توزیع و مصرف عادلانه غذا در كشورهای در حال توسعه، چهره خود را بر افزایش جمعیت رو به افزایش كره زمین نشان داده است، به طوری كه بیش از 3/1 میلیارد نفر از مردم جهان، گرسنه و یا دچار سوء تغذیه هستند. این در حالی است كه در هر ساعت بیش از 9 هزار نفر به جمعیت جهان افزوده می­ شود و بنا­به گزارش كنفرانس جهانی محیط زیست و توسعه، جمعیت كشورهای در حال توسعه تا سال 2025 به 5/8 میلیون نفر خواهد رسید و این رقم 83 درصد از كل جمعیت كره زمین را شامل خواهد شد (خدابنده ، 1382). بر اساس مطالعات انجام شده جمعیت ایران نیز تا سال 14700 در محدوده­ای بین 87 تا 5/93 میلیون نفر خواهد بود. به این ترتیب در سال­های آینده تولید غذا از نگرانی­های اصلی بشر خواهد بود، زیرا در طی دو دهه آینده بشر باید به اندازه كل تاریخ گذشته خود غذا تهیه كند (خدابنده ، 1382).

2-2- گیاه­شناسی گندم

گندم گیاهی است تك لپه، علفی و یک ساله از تیره غلات و گونه Triticum aestivum كه انواع خودرو و پرورش یافته دارد. گونه­ های خودروی آن بیشتر علف­هرز هستند و ارزش خوراكی چندانی ندارند ایران­نژاد و شهبازیان، 1384).

2-2-1- ریشه

ریشه ­های گندم افشان و سطحی است. ریشه ­های اصلی و فرعی از محل طوقه خارج می­شوند و همگی هم­قطر هستند. عمق فعالیت ریشه ­های گندم در خاك حدود 30 سانتی­متر می­باشد، و در خاك­های مناسب تا 100 سانتی­متر در عمق خاك نفوذ می­نماید. در هر حال  10 درصد ریشه در سطوح فوقانی، 60 تا 70 درصد در عمق 30 سانتی­متری و بقیه در عمق بیشتر می­باشند (ایران­نژاد و شهبازیان، 1384). گندم دو گونه ریشه دارد: 1- ریشه های اولیه، ریشه های بذری یا جنینی كه همراه با ریشه­چه از محل اولین گره لپه­ای و دومین گره یا گره كلئوپتیلی خارج می­ شود، ریشه ­های بذری گندم شامل ریشه­چه و یک تا هفت ریشه خارج شده از اولین گره می­باشد 2- ریشه های ثانویه نابجا یا كاذب كه نقش اساسی و اصلی ریشه بر عهده این نوع ریشه­هاست و از طوقه منشا می­گیرند (سرمدنیا و كوچكی، 1376).

2-2-2- برگ

روی هر ساقه معمولا 7 تا 8 برگ وجود دارد كه از محل گره­های ساقه خارج می­شوند و به طور متناوب در ارتفاع ساقه قرار می­گیرند. هر برگ از دو بخش نیام و تیغه باریک و بلندی كه به منزله دمبرگ است، تشكیل شده است كه ساقه را به صورت غلافی در بین دو گره در بر می­گیرد و به استحكام ساقه كمك می­نماید. حد فاصل برگ و دمبرگ زوایدی زبانه مانند به نام زبانك[2] و گوشوارك وجود دارد. زبانك از محل اتصال برگ به دمبرگ خارج می­ شود. به ارتفاع 2 تا 3 میلی­متر، شفاف و بی­رنگ است. گوشوارك از دو زبانه تشكیل شده، بخشی از ساقه را احاطه می­كند و كرك­های ریزی دارد (امام، 1383).

 اهمیت برگ انتهایی ساقه گندم كه جوان­تر از سایر برگ­هاست و دیرتر از بقیه به وجود می­آید، فوق­العاده زیاد است؛ زیرا عمل آن تامین كربوهیدرات­های ذخیره­ای دانه است. بنابراین هر عاملی كه از ایجاد آن جلوگیری كند، اثر زیادی بر كاهش عملكرد دانه خواهد داشت. ضمنا ظهور آن برای كشاورزی كاربرد علمی دارد كه فرا رسیدن زمان آبیاری را نشان می دهد (تاج بخش و پور میرزا، 1382).

2-2-3- ساقه

ساقه گندم همانند تمامی گیاهان تیره غلات بند بند، توخالی و استوانه­ای است. به طوری كه شكل استوانه­ای و وجود دسته­های فیبر در آن موجب استحكام ساقه می­ شود. این ویژگی، ساقه را در مقابل خوابیدگی یا ورس مقاوم می­نماید. علاوه بر ساقه اصلی، اغلب رقم­های گندم دارای ساقه­های ثانویه به نام پنجه می­باشند. محل گره­ها در ساقه توپر و مغزدار می­باشند. ساختمان گره­ها نیز به استحكام گره­های ساقه كمك می­نماید و از خوابیدگی گیاه (ورس) جلوگیری می­كند. ارتفاع، رنگ و ضخامت ساقه در رقم­های مختلف متفاوت است (ایران نژاد و شهبازیان، 1384).

2-2-4- گل آذین

در انتهای هر ساقه گندم یک سنبله وجود دارد كه دارای یک محور اصلی است و روی محور اصلی سنبلك­ها یا سنبلچه­ها به وجود می­آیند و هر یک دارای 3 تا 5 گل هستند كه بعد از لقاح معمولا  تعدادی گل در هر سنبلچه، بارور و به دانه تبدیل می­ شود كه بستگی به نژاد، نوع خاك و شرایط محیط زیست دارد. هر گلچه شامل یک مادگی یا تخمدان، یک خامه و سه پرچم است. سنبلچه به وسیله دو زائده مقعر به نام پوشه (گلوم[4]) پوشیده می­ شود و در آن 3 تا 5 گل وجود دارد و هر گل به وسیله پوشینه (گلومل[5]) كه از دو لایه به نام پالئا و لما تشكیل شده از اطراف احاطه شده است. علاوه بر این، در اطراف هر پرچم و مادگی، سه زائده كوچك به نام پوشینك (گلوملول[6]) وجود دارد.

سنبله­دهی گندم در نژادهای مختلف به حالت فشرده، نیمه فشرده، سست یا نیمه سست هستند. رنگ سنبله نیز در رقم­های مختلف از سفید تا قرمز تغییر می­نماید. گندم گیاهی است خودگشن؛ ولی در شرایط خاص4 تا 5 درصد دگرگشنی دارد و برخی از نژادهای گندم در انتهای لما دارای تیغه­ای باریک و گاهی بلند به نام ریشك و برخی دیگر فاقد آن هستند. رنگ و اندازه و شكل ریشك در رقم­های مختلف، متفاوت است. ارقام

موضوعات: بدون موضوع  لینک ثابت
 [ 02:46:00 ب.ظ ]




سازمان یافته‌ای اقدام به کشاورزی نمود. به زودی انسان آموخت که در همان زمین نمی‌تواند به طور پایان‌ناپذیری گیاهان مختلف را کشت کند و این موضوع او را به فکر راه‌ها و روش‌هایی برای بهبود حاصلخیزی خاک واداشت. شواهد اولیه حاکی از آن است که رومی‌ها و آریائی‌ها کتاب‌های دست‌نویس فراوانی در رابطه با بهبود کشت گیاهان برای کشاورزان داشته‌اند. برای مثال رساله کولوملا تحت عنوان کشاورزی که حدود 60 سال بعد از میلاد مسیح نوشته شده است، شامل تشریح عملیات مختلف کشاورزی است که در امپراطوری روم برای نسل‌های متمادی از آنها استفاده می‌شده است.در همین اثنا، عده‌ای در رابطه با مواد غذایی خاک که گیاهان از آن تغذیه می‌کردند کنجکاو شدند. در قرن شانزدهم برناردپالیزری، ادعا نمود که بقایای گیاهی حاوی نمک یا موادی است که رشد گیاهان را تقویت می‌کند. درحالی که جان باپتیستاوان هلمونت معتقد بود که آب مبنای اصلی رشد گیاهان است. بعدها این فکر که عناصر اصلی محلول در آب موجود در خاک در حقیقت عامل رشد گیاه است توسط آزمایشات جون وودوارد به اثبات رسید. برخی دیگر از دانشمندان هوموس را به‌عنوان تقویت کننده رشد گیاهان تلقی نمودند (آستارائی و کوچکی؛ 1375).

در حال حاضر در کشورهای در حال توسعه، تامین نیاز غذایی مردم از مهم‌ترین مشکلات فراروی بشر می‌باشد. بنابراین توجه به افزایش کمی و کیفی تولید محصولات زراعی در همه کشورها امری ضروری می‌باشد به‌طوری‌كه بیشتر کشورهای دنیا قسمت قابل توجهی از بودجه سالیانه خود را به بخش کشاورزی و تحقیقات مربوطه اختصاص می‌دهند که در این زمینه تا حدودی به موفقیت‌های قابل توجهی نیز دست پیدا کرده‌اند (بحرانی، 1379).

فرضیات:

استفاده ازكوداوره اثرمعنی داری برعملكرد گیاه لوبیادارد؟

استفاده از باكتری آزسپیریلوم به طور معنی داری باعث افزایش عملكرد دانه در لوبیا می گردد؟

استفاده از باكتری آزسپیریلوم به طورمعنا داری باعث عملكردبیولوژیكی درلوبیا می گردد؟

اهداف:

بررسی ومقایسه اثرآزسپیریلوم بررشدلوبیا

بررسی اثركاربردآزسپیریلوم وكود ازته برعملكرد دانه لوبیا

بررسی اثركاربرد آزسپیریلوم ازته برعملكرد بیولوژیكی درلوبیا

-2- کلیات

 1-2-1- اهمیت حبوبات

  انسان به طور متوسط روزانه 2800 کالری انرژی نیاز دارد. ولی در کشورهای پیشرفته مصرف روزانه کالری 3500 و در کشورهای جهان سوم این میزان به 2200 کالری برای هر نفر در روز می‌رسد. (مجنون حسینی، 1379). میزان پروتئین در اکثر حبوبات بین 32-18 درصد است (آرنون، 2002). به‌طور متوسط رژیم غذایی خصوصاً در جهان سوم بیشتر نشاسته است و کمبود پروتئین در تغذیه میلیون‌ها نفر انسان در کشورهای توسعه نیافته، امروزه یکی از مشکلات می‌باشد (مجنون حسینی، 1381). حبوبات به دلیل دارا بودن درصد قابل توجهی از مواد پروتئینی از ارزش غذایی نسبتاً بالایی برخودار می‌باشد (آیکروید و دوقتی، 2003). پروتئین که یکی از مواد غذایی عمده در تغذیه جانوران محسوب می‌شود، از دو منبع گیاهی و حیوانی قابل تأمین است. میزان پروتئین در غذای حیوانی معمولاً کمتر از میزان پروتئین در منابع گیاهی است. ولی پروتئین‌های موجود در غذاهای حیوانی به علت داشتن تعداد و مقدار اسید آمینه بیشتر، با ارزش‌تر از پروتئین‌های گیاهی است. از طرفی، تولید پروتئین حیوانی از پروتئین گیاهی مشکل‌تر و گران‌تر است. لذا در کشورهایی که به دلایل اقتصادی و یا مذهبی قادر به استفاده از گوشت و فرآورده‌های دامی نیستند، حبوبات می‌توانند منبع عمده پروتئین را تشکیل دهند. مطالعات حاکی از آن است که قسمتی از کمبود پروتئین را می‌توان به وسیله مصرف حبوبات خصوصاً لوبیا جبران نمود. حبوبات علاوه بر تأمین پروتئین، به علت وجود باکتری‌های تثبیت کننده نیتروژن هوا در ریشه، در حاصلخیزی خاک مؤثر می‌باشند. در کشورهای پیشرفته، نیز به عنوان مکمل غذایی دارای مصرف زیادی است (مجنون حسینی، 1379).

 حبوبات دومین منبع غذایی بشر پس از غلات و عمده‌ترین منبع پروتئین گیاهی است. (باقری و همکاران، 1380. کوچکی و بنایان اول، 1386). مقدار پروتئین آنها حدود 2 تا 4 برابر غلات و 10 تا 20 برابر گیاهان غده‌ای می‌باشد. حبوبات 20 درصد پروتئین و 10 درصد انرژی جمعیت انسانی را تأمین می‌کند و به دلیل داشتن 8 تا 14 درصد پروتئین دارای انرژی بیشتری نسبت به علوفه ذرت می‌باشد. (مجنون حسینی، 1381). حبوبات به عنوان مهمترین منابع غذایی گیاهی سرشار از پروتئین، دارای ارزش غذایی زیاد و قابلیت نگهداری خوبی هستند. طبق مطالعات انجام شده، ترکیب مناسبی از پروتئین حبوبات با غلات می‌تواند سوء تغذیه و کمبود اسید آمینه‌های ضروری انسان را بر طرف سازد. از طرف دیگر، با توجه به توانایی تثبیت نیتروژن در این گیاهان، قرار دادن آنها در تناوب به پایداری سیستم‌های زراعی کمک می‌کند. یکی از راه‌های افزایش تولید محصولات کشاورزی، افزایش عملکرد در واحد است. استفاده از ارقام اصلاح شده، تهیه و آماده سازی بستر مطلوب کاشت، انتخاب تاریخ و

پایان نامه

روش کاشت مناسب، میزان بذر، تناوب زراعی و غیره موجب افزایش عملکرد در واحد سطح می‌گردد. یکی از عوامل مهم در تغییرات عملکرد حبوبات، تغذیه مناسب می‌باشد. تغذیه مطلوب بوته، تغذیه‌ای است که در نتیجه آن، عوامل محیطی دیگر نظیر آب، نور، و غیره نیز به‌طور مؤثر مورد استفاده گیاه قرار گیرد و در عین حال، رقابت درون بوته‌ای طوری باشند تا حداکثر عملکرد به‌دست آید (مجنون حسینی، 1379).

1-2-2- گیاه‌شناسی لوبیا

 حبوبات متعلق به خانواده بقولات و زیر خانواده پروانه آسایان می‌باشند. در بین حبوبات تنوعی از گیاهان درختی، بوته‌ای و علفی که در مناطق گرمسیر و معتدل گسترش یافته‌اند، به چشم می‌خورد. حدود 18000 گونه در خانواده بقولات وجود دارد. (کوچکی و بنایان اول، 1386). یکی از مهمترین حبوبات در جهان، لوبیا است. تمامی گونه‌های لوبیا متعلق به دو جنس عمده است. جنس Phaseolus که شامل گونه‌های بذر درشت آمریکایی است و جنس Vigna که شامل گونه‌های بذر ریز آسیایی است. گونه‌های آمریکایی، بومی آمریکا و گونه‌های آسیایی بومی جنوب آسیا هستند. گونه‌های آمریکایی دارای غلاف‌هایی پهن با نوک بلند می‌باشد و دارای تعداد محدودی بذر دست در هر غلاف (4 تا 8 عدد) می‌باشند. گونه‌های آسیایی نیز دارای غلاف کوچک (حداکثر به طول 10سانتیمتر) و استوانه‌ای هستند. در داخل هر غلاف تعداد زیادی بذر (تقریباً 20 عدد) وجود دارد. در حال حاضر 18 نوع لوبیا در سطح جهان کاشته می‌شود (کوچکی و بنایان اول، 1386).

Phaseolus Vulgaris  که در فارسی لوبیا چیتی و به زبان انگلیسی Pinto bean و یا Spotted bean نامیده می‌شود، یکی از زیرگونه‌های لوبیای معمولی است. لوبیا دارای واریته‌های بوته‌ای با رشد محدود و واریته‌های رونده با رشد نامحدود می‌باشد که تا ارتفاع 2 الی 3 متری هم رشد می‌کنند. گل‌ها در این گیاه به رنگ‌های متنوع سفید، صورتی و ارغوانی مایل بنفش مشاهده می‌شوند. گل‌ها بر روی محور گل‌آذین از پایین به بالا شکوفا می‌شوند. غلاف‌های لوبیا، کشیده و آویزان هستند. شکل غلاف در ارقام مختلف، متفاوت و به اشکال خمیده، مستقیم، پهن یا استوانه‌ای مشاهده می‌گردند (باشتنی، ا. 1383). لوبیا گیاهی گرمادوست است و برخی ارقام آن نسبت به طول روز بی تفاوت و بعضی دیگر حساس یا روز کوتاه می باشند. این گیاه خودگشن است و سیستم ریشه‌ای نازک و باریک دارد. (دوبتز و ماهالا، 1999). برای رشد کامل لوبیا 130-120 روز وقت لازم است. از حدود 39-26 روز پس از کاشت چنانچه طول روز بین 18-10 ساعت باشد، به گل می‌نشیند. کمبود رطوبت را تا حدودی تحمل می‌کند، البته در شرایط خشک، تولید آن به شدت کاهش می‌یابد، ولی در طی پر شدن غلاف و گلدهی، به هوای خشک حساس است. بهترین مناطق کشت آن مناطقی است که در آخر فصل رشد آن، بارندگی صورت نگیرد (کوچکی و بنایان اول، 1386).

 در شرایط گرمسیری و نیمه گرمسیری، لوبیا را در انواع خاک‌ها کشت می‌کنند اما قادر به رشد در خاک‌های رسی با بافت سنگین که سطح سفره آب زیرزمینی در آنها بالا باشد، نیست (آكوستا و آدامز، 2003). شوری زیاد خاک، به‌طور قابل توجهی باعث کاهش عملکرد لوبیا می‌شود. ارقام متفاوت از نظر تثبیت ازت با هم فرق دارند. این اختلافات تا حدی به علت تفاوت در انتقال و اختصاص کربوهیدرات‌های غیرساختمانی به گره‌ها در واریته‌های متفاوت است. در بسیاری از نقاط جهان، عملکرد لوبیا را می‌توان به‌طور قابل توجهی از طریق بهبود عملیات زراعی، افزایش داد. تاریخ کاشت، مقدار بذر، فواصل و عمق کاشت مناسب همراه با مدیریت خوب آبیاری، استفاده از کود و کنترل آفات، بیماری و علف هرز، همگی در به حداکثر رساندن عملکرد لوبیا سهیم هستند (دوبتز و ماهالا، 1999).

 1-2-3- اهمیت غذایی لوبیا

 انواع لوبیا در بین گیاهان تجاری حاوی بیشترین مقدار پروتئین هستند. آنها فاقد اسید آمینه متیونین می‌باشند، اما این کمبود را می‌توان با مخلوط کردن آنها با گوشت، ذرت، برنج، ماهی و یا پنیر جبران کرد (کوچکی و بنایان اول، 1386).

 مطالعات انجام شده نشان می‌دهد که پروتئین گیاهی به سرعت در میوه‌ها، مخصوصاً بذرها جمع می‌شوند. در فاصله بین 60-52 روزگی گیاه، هر روز حدود 17 میلی‌گرم پروتئین به هر تک بوته افزوده می‌شود. علاوه بر پروتئین، لوبیا دارای کلسیم، آهن و منیزیم می‌باشد و نیز منبع خوبی از انواع ویتامین‌ها از جمله ویتامین B، تیامین، پیروکسین(6B)، نیاسین و اسیدفولیک می‌باشد. به طور متوسط ترکیب دانه سبز لوبیا شامل 2/85 درصد آب، 1/6 درصد پروتئین، 2/0 درصد چربی، 3/6 درصد هیدرات کربن، 4/1 درصد فیبر و 8/0 درصد خاکستر است. دانه‌های خشک آن نیز حاوی 11 درصد آب، 22 درصد پروتئین، 6/1 درصد چربی، 8/57 درصد هیدرات کربن، 4 درصد فیبر و 6/3 خاکستر است (باقری و همکاران، 1380).

 لوبیا مهمترین عضو خانواده حبوبات به شمار می‌آید و به خاطر درصد بالای پروتئین و سایر خصوصیات مطلوب زراعی، بیشترین سطح زیر کشت را در بین حبوبات به خود اختصاص داده است (مجنون حسینی، 1379).

1-2-4- سطح زیر کشت لوبیا در جهان

 سطح زیر کشت جهانی انواع لوبیا 24 میلیون هکتار است و از این نظر در بین حبوبات مقام اول را داراست. متوسط عملکرد جهانی لوبیا حدود 500 کیلوگرم در هکتار است. 40 درصد سطح زیر کشت آن در آسیا و 30 درصد در آمریکا است. تقریباً 9 میلیون هکتار سطح زیر کشت انواع لوبیا در هندوستان، 4/0 میلیون هکتار در برزیل، 5/1 میلیون هکتار در مکزیک، 3/0 میلیون هکتار در بروندی و 4 میلیون هکتار در یوگسلاوی است (کوچکی و بنایان اول، 1386).

1-2-5- سطح زیر کشت لوبیا در ایران

 سطح زیر کشت لوبیا در کشور 109 هزار هکتار و تولید سالانه 180 هزار تن است که از نظر سطح زیر کشت پس از نخود و عدس و از نظر تولید بعد از نخود قرار دارد (صادقی پور و غفاری خلیق، 1381).

1-2-6- سطح زیر کشت لوبیا در استان

  بر اساس جدیدترین آمار جهاد کشاورزی استان کهکیلویه وبویراحمد، در سال زراعی 1386-1385 سطح

موضوعات: بدون موضوع  لینک ثابت
 [ 02:46:00 ب.ظ ]




آزمایشی در سال 1388 در منطقه دشتروم واقع در شهرستان بویراحمد انجام گردید. آزمایش به صورت فاکتوریل در قالب طرح بلوكهای کامل تصادفی در سه تکرار انجام گردید. عامل­های آزمایش شامل کود اوره در چهار سطح (0N0 =، 100N1 = ، 200N 2 =، 400   N3 =كیلوگرم در هكتار) و كلرید سدیم در سه سطح  (0,S0=   S2 =200 ,S1 =100كیلوگرم در هكتار) با 12 تیمار مورد بررسی قرار گرفت. صفات مورد ارزیابی شامل تعداد سنبله در واحد سطح ( مترمربع)، تعداد دانه در سنبله، وزن هزار دانه، طول سنبله، ارتفاع بوته، عملکرد بیولوژیک، عملکرد دانه،  شاخص برداشت بود. نتایج حاصل از تجزیه واریانس نشان داد كه اثر كلرید سدیم بر تمامی صفات به جزء شاخص برداشت معنی­دار بود و همچنین اثر اوره  بر تمامی صفات
معنی­دار بود. بر همكنش اوره و كلرید سدیم فقط بر عملكرد بیولوژیك، عملكرد دانه، تعداد سنبله در واحد سطح ( مترمربع) و تعداد دانه در سنبله معنی­دار بود.

واژه های كلیدی: عملكرد، گندم آبی الوند، كود اوره، كلرید سدیم

1-1-کلیات

گندم[1] گیاهی تک لپه­ای از راسته گلومی­‌فلورا[2]، خانواده گرامینه[3]، طایفه هوردآ[4] و از جنس تریتیكوم[5] است. گندم یکی از دیرینه­ترین و پرارزش­ترین گیاهان روی زمین می‌باشد که روی هم رفته سطح زیر کشت آن نزدیک به یک هشتم زمین­های زراعی جهان را تشکیل داده است سطح زیركشت و تولید سالیانه گندم در جهان بیش از سایرغلات می­باشد. گندم گیاهی است که اهمیت اقتصادی آن چه از نظر تولید و چه از نظر تغذیه در دنیا بیش از سایر محصولات کشاورزی می­باشد. به همین دلیل تحقیقات زیادی در ایران و جهان در مورد افزایش محصول آن صورت می­گیرد. توسعه سطح زیر کشت و افزایش عملکرد محصول در واحد سطح دو استراتژی مهم برای بالا بردن میزان تولید هر گیاه می باشد برای تکامل مناسب گیاهان تأمین نیتروژن آنها در هر یک از مراحل رشد لازم است .تنها دادن کود زیاد و یا مناسب کافی نیست بلکه تأمین مداوم نیتروژن برای گیاه از اهمیت بیشتری برخوردار است، اگرچه مصرف نیتروژن برای غلات در چند مرحله توصیه می­ شود اما باید توجه داشت که این عمل در مناطقی که پراکنش باران مناسب باشد امکان پذیر خواهد بود در مناطق خشک مصرف نیتروژن بلافاصله قبل از مرحله گلدهی گندم موفقیت­آمیز نخواهد بود و دادن کود نیتروژن به صورت سرک در موقع گلدهی یا بعد از آن دارای اشکالاتی می­باشد ازجمله اینکه به علت رشد رویشی گندم رفت وآمد وسایل کودپاشی مشکل بوده و باعث صدمه دیدن گیاهان می­ شود (سیادت و همکاران، 1376).

شوری پس از خشکی از مهمترین و متداول­ترین تنشهای محیطی درسطح جهان است. بخش قابل توجهی از اکوسیستم­های طبیعی و زراعی دنیا تحت تنش شوری قرار دارد در ایران معادل 25 درصد مساحت زمین­های کشور دارای شوری است امروزه به علت استفاده بی­رویه از منابع طبیعی و بکارگیری تکنولوژی­های نامناسب در تولید محصولات کشاورزی بویژه در رابطه با آب آبیاری بخش قابل توجهی از زمینهای کشاورزی در مناطق خشک با پدیده شوری مواجه هستند. کودهای ازته از جمله کود اوره اثر قابل توجه و معنی­داری بر روی عملکرد کمی و کیفی گیاهان بخصوص گندم آبی دارد. این امر در خاکهای مناطق خشک و نیمه خشک کشور که دارای میزان کمی مواد آلی می­باشد حائز اهمیت زیادی است. بدون مصرف کود ازته از جمله کود اوره عملکرد گندم در حد پائینی است و برای زارعین مقرون به صرفه اقتصادی چندانی نیست. از طرفی در خاکهای شور، وجود املاح محلول بخصوص کلرید سدیم نقش مهمی در کاهش عملکرد دارد. تعیین سطوح مناسب این نمک در خاک که مانع کاهش محصول نگردد، یافته مهمی خواهد بود.

1-2- اهداف پژوهش

1- بررسی اثر مصرف کود اوره بر عملکرد دانه و بیولوژیک گندم آبی رقم الوند به منظور تعیین بهترین تیمار کودی.

2- بررسی اثر کلرید سدیم بر عملکرد بیولوژیک و دانه گندم آبی رقم الوند.

3- بررسی اثرات برهمکنش کود اوره و کلرید سدیم بر عملکرد بیولوژیک و دانه گندم آبی رقم الوند.

 1-3- فرضیات پژوهش

1- افزایش اوره تا ا سطح 450 کیلوگرم در هکتار سبب افزایش معنی­دار عملکرد بیولوژیک و دانه گندم آبی رقم الوند می­گردد

2- مصرف کلرید سدیم باعث کاهش عملکرد کمی و کیفی دانه و بیولوژیک گندم می­ شود

 2-1- آثار شوری بر زندگی بشر

شواهد تاریخی نشان می‌دهند كه انسان به دلیل تخریب منابع حیاتی، هیچ­گاه نتوانسته است بیش از 800 تا 2000 سال یک تمدن پیشرفته را در یک مكان معین توسعه دهد. این مشكل به دلایل مختلف و از جمله در نتیجه از بین رفتن مداوم زمین‌های قابل كشت پدید آمده است. هم اكنون نیز این مسئله به عنوان یكی از مشكلات عمده تهدیدكننده كشاورزی در سطح بین‌المللی و بالاخص در عرض‌های جغرافیایی پایین مطرح است. یكی از دلایل از بین رفتن بسیاری از زمین‌ها، افزایش بیش از حد تنش شوری است. در اكثر مقالات مربوط به مقاومت به شوری گیاهان، از شوری به عنوان یکی از فاكتورهای مهم در كشاورزی جهان نام برده شده است. ولی با این حال وسعت زمین‌های تحت تاثیر شوری نامعلوم است.

فلاورز و یو (Flowers and Yeo, 1995) شوری را به عنوان یک اصطلاح عمومی در نظر گرفته­‌اند كه بیانگر حضور مخلوط‌‌های متنوعی از نمك‌های خاك می‌باشند. افزایش نمك در خاك باعث ایجاد مشكلات فراوانی برای مردم جهان مخصوصاً در نواحی خشك و نیمه خشك شده است، چرا كه تولید محصولات كشاورزی به آب آبیاری وابسته می‌باشد. نیاز اعلام شده برای افزایش تولید غذا به همراه مشكل شور شدن زمین‌ها و نیز با توجه به این حقیقت كه بشر در آینده نمی‌تواند زمین‌های كشاورزی را رها نماید و به سراغ زمین‌های جدید برود، همه نشانه‌های خوبی برای تغییر اولویت‌های كاری و تحقیقاتی كشاورزی در سال‌های آینده می‌باشند. همین طور كه افزایش جمعیت ادامه می‌یابد و زمین‌های كشاورزی بیشتری تحت سیستم‌های آبیاری قرار می‌گیرند، شوری اهمیت بیشتری پیدا می‌كند. در این زمینه چه كاری را می‌توان در آینده انجام داد و چه نقشی را اصلاح نباتات و فیزیولوژی گیاهی می‌تواند ایفا كند؟ اینها سوالاتی است كه ذهن متخصصین را به خود مشغول نموده است. علاوه بر این­ها اگر جنبه‌های زیبا شناختی و نیز آثار اجتماعی و فرهنگی شوری بر زندگی انسان مورد توجه قرار گیرد، ملاحظه می‌گردد كه شوری به نوعی با تمام جنبه‌های زندگی انسان عجین شده است. لذا بررسی تاثیر شوری بر كشاورزی تنها یكی از جنبه‌های متنوع تاثیر این پدیده جهانی است.

2-2- آثار فیزیولوژیک تنش شوری بر جنبه‌های مختلف رشد

پتانسیل اسمزی بالای محلول خاك و غلظت بالای املاح موجود در خاك كه عامل سمیت یون­ها (به علت افزایش یونهای سدیم و كلر در خاك و جذب بیش از حد مورد نیاز گیاه) و به هم زدن تعادل یونها یا كمبود تغذیه‌ای در گیاه هستند، به طور بالقوه برای گیاه خطرناك می‌باشند. میر محمدی میبدی و قره‌یاضی (1380) و اشرف و مك‌نیلی (Ashraf and McNeilly, 2004) بیان كردند كه گیاه در عمل، در مناطق شور با سه مشكل اساسی مواجه است:

    • به دست آوردن آب از خاك دارای پتانسیل آب بسیار كم و در نتیجه كاهش جذب آب توسط گیاه كه خود منجر به كاهش جذب مواد غذایی می‌شود.
    • مواجه شدن گیاه با غلظت‌های بالای یون­های سمی سدیم یا دیگر یون­ها و در نتیجه افزایش تجمع یون­های سمی در گیاه.
  • تغییر در تعادل عناصر غذایی و در نتیجه كاهش مواد غذایی قابل دسترس در گیاه و ایجاد اختلال در فرایندهای طبیعی رشد.

2-3- تغییر در تعادل عناصر غذایی

شوری ممكن است از طریق به هم زدن تعادل یونی و اثر بر روی تغذیه گیاه، رشد گیاه را محدود نماید. اگر ظرفیت كاتیونی خاك بیش از 40 تا 50 درصد با سدیم اشباع شود، اختلالات تغذیه‌ای ایجاد می‌گردد (میر محمدی میبدی و قره‌یاضی، 1380). افزایش سدیم باعث كاهش میزان كلسیم، منیزیم و پتاسیم در گیاه می‌شود (دهداری، 1383). به دلیل فراوانی و غالبیت دو یون Na+ و Cl در خاك و آب‌های شور، از جذب بسیاری از عناصر پرمصرف و كم­مصرف كاسته می‌شود. از این رو نسبت بالایی از نسبت یون‌‌های Na+/Ca2+ ، Na+/K+ ،Ca2+/Mg2+  و Cl/Na2+ در بافت گیاهان بوجود می‌آید. گراتان و گروی (Grattanand Grievi, 1999) و مارشنر (Marshner, 1995) گزارش دادند كه از كل عناصری كه جذب گیاه می‌شود، نیتروژن به تنهایی سهمی در حدود 80 درصد دارد. ایشان بیان نمودند كه Cl مانع جذب و آسیمیلاسیون نیترات می‌گردد و Na+  از جذب پتاسیم جلوگیری می‌كند.

2-4- ساز و كارهای مقاومت به شوری

تحمل به شوری غالباً به پیچیدگی­های فیزیولوژیكی و آناتومیكی ساختار گیاه بستگی دارد. این حقیقت، یافتن راه­حلی را كه از طریق آن بتوان تحمل به شوری گیاهان را در سطح وسیع افزایش داد، مشكل می‌سازد. عوامل زیادی نظیر گونه گیاهی، درجه حرارت محیط، تركیب نمك­های خاك یا آب، مرحله رشد گیاه، متغیرهای محیطی و واریته گیاه، بر روی تحمل و مقاومت گیاه در برابر شوری اثر می‌گذارد (میر محمدی میبدی و قره‌یاضی،1380). فلاورز و همكاران (Flowers and et al, 1977) و ویسل (Waisel, 1972) روش­های مختلف مقاومت گیاهان در برابر شوری را به تنظیم نمك و تحمل نمك تقسیم ­بندی كردند. شكل (2-1) چگونگی مقاومت به شوری گیاهان را بصورت شماتیک نشان می‌دهد.

پایان نامه و مقاله

 
شكل 2-1: نمایش شماتیک روش‌های مختلف مقاومت گیاهان در برابر شوری

 (Flowers and et al, 1977 Waisel, 1972 ?

2-5-  تنظیم مقدار نمك در گیاهان

2-5-1- انتخاب یونی

برخی از محققین بررسی مكانیزم‌های جذب و الگوی تجمع یون در بخش‌های مختلف گیاه را در شناسایی ژنوتیپ‌ها و لاین‌های مقاوم و حساس به نمك مهم دانسته‌اند (Ashraf and Saghir, 2001). در شرایط شوری گیاه باید قادر باشد ضمن جذب مواد غذایی، از جذب یونهای سمی ممانعت كند. گیاهانی كه بتوانند ضمن محدود ساختن جذب یونهای سمی، اقدام به جذب یونهای ضروری در حد كافی نمایند، مقاوم‌تر از دیگر گیاهان می‌باشند (دهداری، 1383). در این رابطه، مكانیسم‌‌های انتخاب نوع یون بالاخص یونهای سدیم و پتاسیم اهمیت ویژه‌ای دارد. مكانیسم‌های مسئول تمایز بین این دو، احتمالا در غشاء بافت‌ها و انواع اندامك­های گیاه عمل می‌كنند (Shannon, 1998). شكاری و همكاران (1377) و اشرف و مك‌نلی (Ashraf and McNeilly, 2004) نیز گزارش دادند كه واریته‌های متحمل به شوری جو، هنگام تنش شوری دارای Na+ و Cl  كمتر و K+ و +2Ca بیشتر، بویژه در بخش هوایی خود بودند. در نتیجه واریته‌های مقاوم در مقایسه با واریته‌های حساس دارای +Na/+2Ca ، +Na/ +K  بالاتری می‌باشند. در سایر گونه‌‌ها  نیز از این نظر تفاوت‌هایی وجود دارد. لاین‌های مقاوم  یونجه در مقایسه با لاین‌های حساس،  Cl بیشتری در ساقه‌چه و ریشه‌چه خود تجمع نمودند، در حالی كه لاین‌های حساس تفاوتی از نظر میزان تجمع +Na در ریشه و اندام هوایی نداشتند (Ashraf and Saghir, 2001). تحمل سمیت یونی در بین گونه‌ها و واریته‌ها متفاوت است و امكان دارد مربوط به دفع یون از طریق لایه پوست ریشه[6] یا توزیع یونهای وارد شده به گیاه در برگ­های پیر یا قسمتهای دیگر گیاه باشد (Al-Karaki, 2000). اشرف و سقیر  (Ashraf and Saghir, 2001) نیز معتقد هستند كه یكی از ساز وكارهای موثر در مقاومت به شوری، نسبت Na+/K+  بالا در اندام‌های مختلف و در مراحل مختلف رشد گیاه می‌باشد.

برخی از گونه‌های وحشی گیاهان زراعی قادر هستند در زمان رشد در محیط شور، مقداری از سدیم اضافی جذب شده را دفع كنند. دفع Na+ و جبران آن توسط K+ در برگهای جوان همبستگی بسیار بالایی با تحمل به شوری دارد (Ashraf and McNeilly, 2004؛ Dubcovasky et al, 1996). در گندم نیز كولمر و همكاران (Colmer et al, 1995) نشان دادند كه تجمع زیاد K+ در حفظ مقادیر پایینNa+ در برگهای جوان، نقش مهمی در تحمل به شوری دارد. بیشتر گلی‌كوفیت‌های[7] متحمل به شوری نسبت به ارقام حساس، تمایل زیادتری در جذب K+ بیشتر و Na+كمتر دارند (Shannon, 1998).

هاسگاوا (Hasegawa, 1986) گزارش داد كه جذب و جابجایی عناصر اصلی غذایی مثلK+ وCa2+ در نتیجه تنش شوری به شدت كاهش می‌یابند. در این شرایط، گروهی از گیاهان به سلول‌های در حال رشد خود اجازه می‌دهند تا از غلظت‌های یونی بالا اجتناب كنند. دفع كننده‌های نمك قادر هستند جذب نمك به سمت ساقه را محدود نمایند. دلیل این امر ممكن است جذب زیاد یونهای سمی مثل Na+ توسط گیاه و ذخیره و دفع مجدد آن (جابجایی) از ریشه و ساقه به سمت خاك باشد (Winter, 1982a; Winter, 1982b).

دفع یونی و یا محدود كردن آنها در گیاهان به دو صورت خارج كردن از طریق غده‌های نمكی و دیگری از طریق پمپ‌ها و كانال‌های غشایی انجام می‌گیرد. روش اول بیشتر در گیاهان غیر زراعی دیده می‌شود و نمك از طریق غده‌های موجود در برگها و یا رگبرگ­ها به بیرون تراوش می‌شود. در برخی از گیاهان زراعی نیز این مورد مشاهده شده است (فهن [نقل از دهداری، 1383]). روش دوم عمدتا در گیاهان زراعی دیده می‌شود. مداخلی كه در گیاه برای عبور و تنظیم یونهای Na+ و Cl وجود دارند شامل غشاء پلاسمای ریشه، واكوئل، غشاء واكوئل در ریشه و ساقه و غشاء پلاسمایی سلول‌های پارانشیمی آوند چوبی است كه باعث تقسیم و توزیع یونها بین ریشه و ساقه می‌شود. در مجموع در گیاهان سه مكانیسم انتقال شامل الف- كانال‌ها، ب- آنتی پورت[8] H+/Na+ ، ج- پمپH+/ATPase برای یون­ها وجود دارد.

الف- كانال‌ها

عبور یون از كانال‌ها بوسیله شیب الكتروشیمیایی یون در غشاء صورت می‌گیرد. این شیب برای سدیم به طرف داخل و برای كلر، به طرف خارج می‌باشد. تا كنون كانال‌های انتخابی برای Na+ شناخته نشده‌اند، اماكانال‌های K+ به مقدار كافی Na+ را انتقال می‌دهند. بهبود تحمل به شوری كه از طریق Ca2+ حاصل می‌شود، به دلیل تاثیر آن در نفوذ پذیری كمتر غشاء پلاسمایی برای Na+ می‌باشد. كانال‌ها در غشاء واكوئل نیز وجود دارند و نقش مهمی در تنظیم ا‌سمزی گیاه ایفا می‌كنند. در این مكانیسم Na+ به طور فعال و برخلاف شیب الكتروشیمیایی به داخل واكوئل پمپ می‌شود (Maathuis and Amtmann, 1999).

ب- آنتی پورت H+/Na+ (انتقال از سیتوپلاسم به بیرون)

انتقال Na+ از این طریق برخلاف شیب الكتروشیمیایی و جذب H+ در جهت شیب الكتروشیمیایی H+ صورت می‌گیرد. انتقال H+ با نیروی فعال پروتون (pmf)[9] انجام می‌شود، بنابراین عمل pmf برخلاف شیب الكتروشیمیایی Na+ است (Maathuis and Amtmann. 1999). این سیستم در غشاء پلاسمایی قارچ‌ها وجود دارد، ولی در برخی گیاهان وجود ندارد. بنابراین پمپ‌های دیگری در غشاء آنها می‌بایست وجود داشته باشد (Maathuis and Amtmann, 1999).

ج- پمپH+/ATPase  

این پمپ، پروتون را برخلاف شیب الكتروشیمیایی حركت می‌دهد و باعث ایجاد پتانسیل غشائی می‌شود. انرژی مورد نیاز این فرایند از طریق ATP فراهم می‌شود. این پمپ در غشاء پلاسمایی سلول‌های كوتیكول و اپیدرمی ریشه، تولید  pmو Na+ را به خارج دفع می‌كند. اما پتانسیل غشائی كه بوسیله آنزیم دیگری ایجاد می‌شود، منجر به انتقالNa+ و K+ از طریق كانال‌ها به داخل سلول می‌شود. پمپH+/ATPase در غشاء واكوئل همراه با پیروفسفاتازها[10] ایجاد  pmf می‌كند و Na+ را به داخل واكوئل می‌كشاند. پمپH+/ATPase در غشاء پلاسمایی سلول‌های پارانشیمی آوند چوبی تولید pmf  می‌كند و باعث توزیع Na+ و Cl  بین ریشه و اندام هوایی گیاه می‌شود.

2-5-2- تحمل نمك از طریق تجمع مواد آلی

وقتی كه گیاهان در معرض خشكی یا شوری قرار می‌گیرند، رشد آنها كاهش می‌یابد و در نهایت متوقف می‌شود. وجود نمك و املاح‌ مختلف در خاك‌های شور و آب باعث كاهش پتانسیل اسمزی می‌شود. هر دو عامل پتانسیل اسمزی پائین خاك و پتانسیل پایین ماتریك[11] موجب كاهش آب موجود در گیاهان می‌شوند و گیاه را در معرض یک تنش ثانویه اسمزی قرار می‌دهند. از نظر فیزیولوژیک این عمل باعث ایجاد تنش خشكی می‌گردد. بین تنش نمك و تنش خشكی رابطه‌ای مستقیم و غیر قابل تفكیک وجود دارد (میر محمدی میبدی و قره‌یاضی، 1380). آثار طولانی مدت تنش اسمزی بر رشد گیاه در سال‌های اخیر بیشتر بررسی شده است. بیشتر گزارش‌ها دلایل مناسبی مبتنی بر توانایی گیاهان برای تنظیم اسمزی ارائه داده­اند. این گزارش‌ها به وضوح نشان داده­اند كه تنظیم اسمزی[12] می‌تواند باعث تجدید دوباره فشار تورژسانس در حضور تنش اسمزی شود. برخی از گیاهان قادر هستند به كمك سنتز و افزایش میزان مواد محلول در سلول‌های خود و یا از طریق كاهش میزان آب موجود در سلول‌ها، در واكنش نسبت به كاهش پتانسیل آب محیط خارج از سلول، پتانسیل ا‌سمزی سلول‌های خود را كاهش دهند و از این طریق موجب آماس سلولی شوند (Winicov, 1994). این فرایند به تنظیم اسمزی معروف است. در سلول‌های گیاهی با بهره گرفتن از انرژی حاصل از تولیدات فتوسنتزی و در واكنش به پتانسیل آب پایین، در محلول سیتوپلاسمی خود، مواد آلی با وزن مولكولی كم، نظیر فروكتان، ساكارز (قندها)، اسیدهای آمینه و نیتروژن متیله شده مشتق از آنها، پرولین، اسیدهای آلی، گلایسین بتایین، تریمالوز، مانیتول و سایر مواد ایجاد كننده اسمز ساخته می‌شود (Winicov, 1994). در اینجا به مهمترین مواد محلول آلی اسمزی اشاره می‌شود.

2-5-3- قندهای محلول

تنظیم اسمزی گیاهان در شرایط شور، وابستگی شدیدی به قندهای محلول دارد (Ashraf and McNeilly, 2004). به نظر می‌رسد نقش گلوكز (Greenway and Munns, 1980) و برخی دیگر از قندها در كل پتانسیل اسمزی و در رشد گلی‌كوفیت‌ها و در شرایط محیطی نرمال بیش از 50 درصد باشد، این عمل تحمل به شوری را بوسیله تاثیر بر تعادل اسمزی و حفظ فعالیت آنزیمی در حضور یون­های سمی بهبود می‌بخشد (Greenway and Munns, 1980). رادرت (Rathert, 1984) بیان كرد كه شوری موجب افزایش بیشتر ساكارز برگی در گونه‌های حساس به شوری در مقایسه با گونه‌های متحمل می‌شود. در این رابطه، اشرف و مك‌نلی (Ashraf and McNeilly, 2004) نیز بیان كردند كه قندهای محلول كل در گونه‌های مقاوم به شوری براسیكا كاهش پیدا می‌‌كند.  او پیشنهاد كرد كه غلظت‌های ساكارز برگی و نشاسته می‌تواند به عنوان شاخص انتخابی در غربال كردن ژنوتیپ‌های متحمل به شوری استفاده شود. نائینی و همكاران (1382) در مطالعه‌ای بر روی سه رقم تجاری انار تحت شرایط شوری بیان نمودند كه در هر سه رقم انار، با افزایش سطوح شوری تا 40 میلی مولار میزان قندهای محلول در برگهای بالغ كاهش یافت و سپس تا سطح 80 میلی مولار افزایش پیدا كرد. مجددا با افزایش شوری قند‌های محلول بطور معنی­داری كاهش نشان داد. در این رابطه اشرف و مك‌نلی (Ashraf and McNeilly, 2004) نیز گزارش دادند كه با افزایش سطوح شوری محتوای قند كاهش پیدا می‌كند. اشرف و مك نیلی (Ashraf and McNeilly, 2004) در بررسی مطالعات انجام شده در زمینه شوری بر روی گیاهان خانواده براسیكا بیان نمودند كه نمی‌توان یک روند خاصی را برای تغییرات قندهای محلول كل بیان نمود. به عنوان مثال در برخی گونه‌ها‌ی گیاهی، با افزایش شوری، محتوای قند افزایش پیدا نمود؛ ولی در سایر گونه‌های مورد مطالعه، افزایش سطوح شوری منجر به كاهش محتوای قند در اندام هوایی گردید.

2-5-4- پرولین

نقش پرولین در تنظیم فشار اسمزی منجر به بحث‌های زیادی شده است. معمولا در  گیاهانی كه در معرض شرایط سخت خشكی و تنش شوری قرار گرفته‌اند، پرولین تجمع پیدا می‌كند. احتمالا پرولین در تنظیم اسمزی و حفظ فعالیت آنزیمی گیاه تحت تنش شوری نقش دارد (Greenway and Munns, 1980). كلروپلاست‌ها مكان اصلی سنتز پرولین در هنگام تنش هستند (Sivakumer et al, 1998).

پرولین می‌تواند از گلوتامیت‌ها یا اورنیتین ساخته شود. یكی از مهمترین آنزیم‌هایی كه در این رابطه كشف شده‌است، P5CS [13] می‌باشد. این آنزیم یک آنزیم دو وظیفه‌ای می‌باشد و در این رابطه محدودیت تجمع پرولین در توتون‌های  تراریخته به دلیل عمل این آنزیم‌ها گزارش شده ‌است (Maggio et al, 2002) .

بطور كلی تجمع پرولین در شرایط تنش شوری یكی از مكانیسم‌های دفاعی در برابر فشار اسمزی است. در خیلی از گیاهان پرولین به عنوان مهمترین ماده در تنظیم اسمزی شناخته شده است (Hoai et al, 2003). با وجود این، تجمع زیاد آن در تعدیل اسمزی مورد شك است و به گونه گیاهی بستگی دارد (Balibrea et

موضوعات: بدون موضوع  لینک ثابت
 [ 02:45:00 ب.ظ ]