رشته مهندسی و مدیریت ساخت نفوذپذیری بتن ها تحت اعمال توامکربناسیون و نفوذ یون کلراید |
توامان نفوذ یون کلراید و کربناسیون می پردازیم. همانطور که مستحضرید، بتن پر مصرف ترین مصالح ساختمانی است. این ماده معمولا از مخلوط نمودن سیمان پرتلند، ماسه، سنگ شکسته و آب تشکیل می شود. در اغلب کشورهای جهان نسبت مصرف بتن به فولاد، از 10 به 1 نیز فراتر رفته است. میزان مصرف امروز بتن در جهان بالغ بر 5/5 میلیون تن در سال است.
دلایل زیادی برای این پر مصرف ترین مصالح مهندسی ذکر شده است:
بتن مقاومت بالایی در مقابل آب دارد. برخلاف چوب و فولاد معمولی، توانایی بتن برای مقاومت در مقابل آب و عدم ایجاد خرابی در آن، از مصالحی ایده آل برای کنترل و ذخیره کردن و حمل و انتقال آب ساخته است.
سهولت شکل دادن به آن برای ساخت اجزای مختلف سازه که به راحتی به درون قالب ها با شکل های مختلف ریخته می شود. [1].
سیمان پرتلند و سنگدانه به آسانی قابل دسترسی و ارزان می باشند.
بتن مسلح که در آن از فولاد و بتن استفاده می شود، طوری طراحی می شود که دو مصالح بتن و فولاد تواما برای تحمل نیروهای وارد به قطعه مقاومت کنند.
بتن پیش تنیده، که در آن با کشیدن کابل های پیش تنیدگی و آرماتورها در بتن فشاری اولیه ایجاد می کنند، برای تحمل تنش های کششی بیشتر در حین بارگذاری قطعات، طراحی شده اند. [2].
بتن به عنوان یکی از مهمترین مصالح ساختمانی در جهان مطرح میباشد و با توجه به اینکه کمتر از دو قرن از اختراع آن با ترکیبات امروزی میگذرد، کماکان رفتار آن در شرایط مختلف در هالهای از ابهام قرار دارد. بتن علیرغم سادگی آشکار آن، دارای ساختار بسیار پیچیدهای است و روابط بین ساختار ماده و مشخصات آن، که معمولاً برای درک و کنترل مواد مختلف سودمند است، را نمیتوان به سادگی به کار برد. بتن شامل یک توزیع غیرهمگن از تعداد زیادی اجزاء جامد است و نیز دارای منافذی است که دارای شکلها و اندازه های گوناگونی میباشند. تمامی این منافذ و یا بخشی از آنها از محلولهای قلیایی پر شده اند. روشهای تحلیلی علم مواد و مکانیک جامدات، در مصنوعاتی که نسبتاً همگن هستند و پیچیدگی بسیار کمتری از بتن دارند به خوبی به کار برده می شود. از جمله این مواد میتوان به فولاد، پلاستیکها و سرامیکها اشاره نمود. به نظر نمیرسد که این روشها بتوانند در مورد بتن خیلی موثر واقع شوند[1]. در واقع واژه بتن (Concrete) از واژه لاتین (Concretus) به معنای “رشد کردن” اشتقاق یافته است [1] و بنا بر دانش تکنولوژی بتن فرایند هیدراتاسیون سیمان و محصولات حاصل از آن تا سالها پس از ساخت ادامه خواهند داشت. این امر سبب مطرح شدن بتن به عنوان یک موجود زنده میباشد. نیاز به آب برای ادامه حیات و بارورتر شدن آن، تاثیرپذیری از شرایط محیطی مانند دما، رطوبت و یونهای مخرب، تغییر خواص با گذشت زمان و بالاخره پیری مصالح تشکیل دهنده آن مؤید زنده بودن این ماده میباشد [2].
در مقایسه با سایر مواد، ساختار بتن یک مشخصه ایستا و ثابت از این ماده نیست. دلیل این امر نیز آن است که دو جزء از سه جزء کاملاً متمایز در ساختار بتن، یعنی خمیر سیمان و ناحیه انتقال بین خمیر و سنگدانه با گذشت زمان و به طور مستمر تغییر می کنند، از طرفی دیگر بر خلاف سایر مصالح، که به صورت یک “کالای آماده برای مصرف” ارائه میشوند، بتن مادهای است که اغلب میباید درست قبل از مصرف در محل کارگاه یا نزدیک آن ساخته شود. از این رو اگر در دو مرحله بتنی با مشخصات یکسان در دو کارگاه متفاوت ساخته شود، نمیتوان از رفتار یکسان آنها مطمئن بود.
به طور کلی، به هر ماده یا محصولی که از یک ماده چسبنده با خاصیت سیمانی شدن، تشکیل شده باشد، بتن اطلاق می شود. تاریخ ساخت و کاربرد بتن به عنوان مصالح ساختمانی از قدمت چند هزار ساله برخوردار میباشد و سازههای ساخته شده از این جنس در ایران و جهان گواه این امر میباشند. با این تعریف، بتن طیف وسیعی از محصولات را شامل می شود ولی در اینجا منظور از بتن، ماده ساخته شده با سیمان پرتلند، آب و سنگدانه (و افزودنی) میباشد.
ساخت بتن با سیمان پرتلند پس از پیدایش سیمان پرتلند در سال 1827 آغاز شده و در طی این دوران به یکی از پرمصرفترین مصالح در صنعت ساختمان تبدیل شده است که این خود گواه پارامترها و ویژگیهای منحصر بفرد آن میباشد. مقاومت عالی بتن در مقابل آب، سهولت فرمپذیری بتن در اشکال و اندازه های مختلف، ارزانتر بودن و سهولت دسترسی به مصالح تشکیلدهنده آن تقریباً در هر نقطه از جهان، از علل متعدد این امر میباشند. طی سالیان گذشته، نوع و کیفیت مصالح بتنی و روشهای ساخت به طور قابل ملاحظهای تغییر کرده است.
اجزاء اصلی تشكیلدهندة بتن، عبارتند از سنگدانه، سیمان و آب. در سالهای اولیه، استفاده از بتن به دلیل کم بودن مقاومت کششی آن، محدودتر بود ولی در اواسط قرن نوزدهم میلادی برای اولین بار از تسلیح بتن استفاده شد و به این ترتیب با لاغر شدن اعضای بتنی، امکان طرح دهانههای بزرگتر و استفاده از تنشهای طراحی بالاتر، به عنوان یکی از مهمترین پیشرفتها در زمینة استفاده از بتن فراهم گردید. با توجه به اینکه مواد اولیه برای ساخت بتن در همه جای دنیا در دسترس است، استفاده از آن در سطح دنیا از همان ابتدا رو به گسترش گذاشت.
بتن از سه فاز مختلف تشکیل شده است. این فازها عبارتند از: سنگدانه، خمیر و ناحیة انتقال. مشخصات مکانیکی و دوام بتن به هر سه فاز ذکر شده< br />وابسته است. بنابراین برای ارزیابی و تعیین مشخصات بتن باید هر سه فاز بررسی شوند. این بررسیها باید از دو دیدگاه صورت گیرد. دیدگاه اول، بررسی هر یک از سه فاز به صورت مستقل و دیدگاه دوم، بررسی اثر این سه فاز بر یکدیگر.
2-1-1- ساختار بتن
2-1-2- ساختار فاز سنگدانه
در واقع سنگدانه تعیین کننده وزن واحد حجم، مدول (الاستیسیته) و پایداری ابعادی بتن می باشد. این خواص بتن تا حدود زیادی بستگی به وزن مخصوص ظاهری و مقاومت سنگدانه ها دارد آن هم به نوبه خود به خواص فیزیکی سنگدانه بیشتر از خواص شیمیایی آن وابسته است. [2].
علاوه به تخلخل، شکل و بافت سنگدانه های درشت نیز در خواص بتن تاثیر دارند .
وجود سنگدانه های با ابعاد بزرگتر و همچنین نسبت زیادی سنگدانه های مسطح و طویل در بتن باعث به وجود آوردن لایه نازک آب در فصل مشترک خمیر و سنگدانه شده و این لایه در ضعیف نمودن پیوستگی خمیر و سنگدانه (در ناحیه انتقال) بسیار موثر است [3].
2-1-3- ساختار سیمان خمیر هیدراته
سیمان پرتلند غیرهیدراته پودر خاکستری رنگی است که از ذرات زاویه داری و در اندازه های بین 1 تا 50 میکرون تشکیل شده است. المانهای اصلی تشکیل دهنده سیمان عبارتند از: کلسیم، سیلیسیوم، آلومینیوم، آهن، منیزیم، سدیم، پتاسیم و گوگرد. این المانها در طبیعت خالص نیستند و به صورت اکسید وجود دارند. سیمان از آسیاب نمودن کلینکر با مقدار کمی سولفات کلسیم به دست می آید. ترکیبات اصلی کلینکر سیمان شامل C3S، C2S، C3A،C4AF است که در دمای 14700 درجه سانتی گراد با ذوب شدن و ترکیب شدن این اکسید ها حاصل می شوند.
هر یک از خواص سیمان تحت تاثیر یکی از اکسیدهای مرکب است، اکسیدهای C3S، C2S حدود 75 درصد سیمان را تشکیل می دهند و ویژگی های مفید سیمان از قبیل چسبندگی مقاومت و ثبات حجمی را این دو اکسید می سازند.
واکنش سیمان با آب را هیدراتاسیون (آبگیری) می گویند. آبگیری C3S خیلی سریع است ولی آبگیری C2S کند می باشد. در نتیجه C3S باعث ایجاد مقاومت کوتاه مدت و C2S باعث ایجاد مقاومت بلند مدت می شود. حرارت ایجاد شده در زمان آبگیری ناشی از واکنش سریع C3S با آب است. C3A اکسید ناپایداری است که شدیدا تحت تاثیر حملات شیمیایی به خصوص حمله سولفات ها قرار می گیرد. از واکنش C3A با سولفاتها ترکیبی به نام اترنژیت حاصل می شود که در مجاورت آب افزایش حجم می دهد و به این ترتیب باعث ترک خوردن و خرد شدن بتن می گردد. C3A در مقاومت سیمان نقش کمی دارد در عوض باعث گیرش آنی سیمان می شود. گیرش آنی به دلیل واکنش سریع C3A با آب رخ می دهد. واکنش C3A خالص با آب بسیار شدید است و به سفت شدن فوری خمیر که به گیرش آنی معروف است منتهی می گردد. برای جلوگیری از این امر در هنگام تولید سیمان سنگ گچ (H2O2، CaSO4) به کلینکر سیمان افزوده می شود. گیرش آنی برگشت ناپذیر است. C4AF در تولید سیمان به شکل کاتالیزور حرارتی عمل می کند. اگر مقدار C4AF در سیمان کم شود حرارت لازم برای تولید کلینکر سیمان افزایش می یابد و باعث غیراقتصادی شدن تولید سیمان می گردد.
هنگامی که پودر سیمان در آب ریخته می شود سولفات کلسیم و ترکیبات دمای بالای کلسیم تمایل به حل شدن پید کرده و مایع جدید سریعا از ذرات یونی مختلف اشباع می شود. در نتیجه تشکیل ترکیبات حاصل از کلسیم سولفات، آلومینات و یون های هیدروکسیل چند دقیقه پس از هیدراتاسیون سیمان ابتدا بلورهای سوزنی شکل سولفوآلومینات کلسیم هیدراته شده، موسوم به اترینگات ظاهر می گردند. پس از چند ساعت بلورهای بزرگ منشوری شکل هیدروکسید کلسیم و بلورهای کوچک الیافی شکل سیلیکات کسلیم هیدراته شده، فضاهای خالی خمیر را که قبلا توسط آب و ذرات سیمان اشغال شده بود پر می کنند. بعد از چند روز بسته به میزان نسبت اکسید آلومینیوم به سولفات سیمان پرتلند، اترینگیات ناپایدار شده و به مونوسولفات هیدراته شده به شکل صفحات شش وجهی در می آید. صفحات شش وجهی شکل همچنان متعلق به هیدروکسید کلسیم هیدراته شده می باشد که در خمیر هیدراته شده کم سولفات یا در سیمان های با C3A زیاد تشکیل می شود [4].
2-1-4- مواد جامد در خمیر هیدراته شده
1- هیدروکسید کلسیم
2- سولفوآلومینات کلسیم
3- دانه های کلینکر هیدراته نشده
4- سیلیکات کلسیم هیدراته
فاز سیلیکات کلسیم هیدراته که مختصرا با C–S–H نشان داده می شود، حدود 50 تا 60 درصد حجم مواد جامد خمیر سیمان کاملا هیدراته شده را تشکیل داده و بنابراین مهمترین بخش مواد جامد خمیر در تعیین خواص آن می باشد. علت نشان دادن این ترکیب به شکل C–S–H این است که نسبت به ترکیبات آن کاملا مشخص نشده و در آن نسبت C به S بین 5/1 تا 2 و نیز آب شیمیایی آن بسیار متغیر است. شکل ذرات C–S–H نیز از کریستال های ضعیف الیافی شکل تا شبکه های منسجم تغییر می کند. به علت شکل کلوییدی و تمایل به خوشه ای شدن آن بلورهای C–S–H تنها با دستگاه میکروسکوپ الکترونی قابل شناسایی دقیق است. ساختار بلورین داخلی C–S–H نیز هنوز معلوم نشده است. قبلا تصور می شد که بلورهای آن شبیه ماده معدنی طبیعی توبرمورایت است و از این رو گاه به C–S–H ژل توبرمورایتی نیز گفته می شد. [5]. با بهره گرفتن از دستگاه های مختلف اندازه گیری مساحت سطح C–S–H در حدود 100 تا 700 متر مربع بر گرم پیشنهاد شده است. مقاومت ماده اساسا به نیروهای واندروالس، اندازه حرفات ژلی یا فاصله بین قسمت جامد که در حدود 18 آنگستروم است نسبت داده می شود.
2-1-5- فضاهای خالی در خمیر سیمان هیدراته شده
انواع مختلف فضاهای خالی در خمیر سیمان ایجاد می شود که در خواص آن تاثیر به سزایی دارند (شکل 2‑1)
شکل 2‑1 محدوده های ابعاد قسمت های جامد و فضاهای خالی در خمیر سیمان هیدراته شده
2-1-6- فضاهای بین لایه ای در C–S–H
پاورز عرض فضاهای بین لایه ای در C–S–H را حدود 18 آنگستروم بیان کرده و معتقد است که این فضاهای خالی 28 درصد قسمت جامد C–S–H می باشد. به هر حال فلدمن و سردا این فضا را بین 5 تا 25 آنگستروم پیشنهاد می کنند. با این وجود این فضاهای متخلخل آنقدر کوچکند که نمی توانند تاثیری در مقاومت و تراوایی خمیر سیمان سخت شده داشته باشند. آب درون این فضاهای کوچک می تواند توسط پیوند هیدروژنی نگه داشته شود و خروج آن تحت شرایطی معین می تواند سبب ایجاد جمع شدگی ناشی از خشک شدن و خزش خمیر گردد.
ممکن است هنگام انتقال از فایل اصلی به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود ولی در فایل دانلودی همه چیز مرتب و کامل و با فرمت ورد موجود است
متن کامل را می توانید دانلود نمائید
چون فقط تکه هایی از متن پایان نامه در این صفحه درج شده (به طور نمونه)
ولی در فایل دانلودی متن کامل پایان نامه
با فرمت ورد word که قابل ویرایش و کپی کردن می باشند
موجود است
فرم در حال بارگذاری ...
[جمعه 1399-10-19] [ 04:36:00 ب.ظ ]
|