کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل


آذر 1404
شن یک دو سه چهار پنج جم
 << <   > >>
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30          



جستجو


 



محیطی متخلخل در مجاورت دیوار عمودی


محیط متخلخل و پدیده انتقال حرارت و جرم در آن، موضوعی است که توجه بسیاری از محققین شاخه‌های مختلف علوم را به خود معطوف نموده است. روش‌های تجربی، بررسی‌های تئوری و شبیه‌سازی‌های عددی  بسیاری که در این زمینه در مهندسی مکانیک، مهندسی شیمی، مهندسی عمران، زمین شناسی و. . . صورت گرفته است مهر تصدیقی بر ادعای فوق می‌باشد.
به علت کاربرد وسیع و روزافزون محیط متخلخل در زمینه‌های مختلف مهندسی همواره نیاز به مطالعات اساسی درباره‌ی چگونگی انتقال جرم و حرارت در محیط متخلخل وجود داشته است، چرا که بررسی‌های دقیق، ابزاری برای بهبود بخشیدن به سیستم‌های مهندسی حاوی مواد متخلخل و بالا بردن کیفیت و کارایی آنها می‌باشد. از موارد کاربرد فوق می‌توان به عایق‌سازی حرارتی ساختمان‌ها، عملیات حرارتی در زمین، راکتور‌های کاتالیزوری شیمیایی، آلودگی آب‌های زیرزمینی، صنعت سرامیک، تکنولوژی زیست‌شناختی، واحدهای ذخیره انرژی، مبدل‌های حرارتی، خنک‌سازی، وسایل الکترونیکی، مخازن نفتی و نمونه‌های دیگر از این دست اشاره نمود. از طرفی در بسیاری از موارد، کوچک‌سازی سیستم‌های انتقال حرارت از یک‌سو و افزایش شار حرارتی از سوی دیگر، نیاز به انتقال حرارت در زمان کوتاه و شدت بالا را ضروری می‌سازد. در مواردی که نیاز به انتقال شار حرارتی زیاد از محیط جامد به سیال است، روش‌‌های موجود نظیر تغییر در دینامیک سیال، هندسه جریان، شرایط مرزی و. . . به تنهایی نمی‌توانند از عهده‌ی تقاضای روز افزون کنترل انتقال حرارت در فرایندهای موجود برآیند. لذا نیاز فوری به مفاهیم جدید و بدیع جهت کنترل انتقال حرارت احساس می‌شود. تکنولوژی نانوسیال پتانسیل بالایی را برای کنترل سیستم‌های مشمول انتقال حرارت در حجم کوچک ارائه می‌دهد. به این معنا که با اضافه نمودن مواد افزودنی به سیال پایه می‌توان در جهت بهبود خواص ترموفیزیکی آن عمل نمود. در این میان میدان‌های مغناطیسی خارجی در بسیاری از جریان‌های طبیعی و صنایع تاثیرگذار هستند. به شاخه‌ای از مطالعات که به اثر متقابل بین میدان مغناطیسی و سیال هادی در حال حرکت می‌پردازد، هیدرودینامیک مغناطیسی[1] MHD می‌گویند. بررسی این شاخه منوط به دانستن معادلات حاکم بر مغناطیس و سیالات و تاثیر هر کدام از پارامترهای این دو دانش بر یکدیگر می‌باشد. در مطالعه حاضر اثر پدیده MHD بر میدان‌های سرعت، دما و غلظت و هم‌چنین انتقال جرم و حرارت نیز منظور گردیده است.

://1zz.ir/%d9%be%d8%a7%db%8c%d8%a7%d9%86-%d9%86%d8%a7%d9%85%d9%87-%d8%a7%d8%b1%d8%b4%d8%af-%d8%b1%d8%b4%d8%aa%d9%87-%d9%85%d9%87%d9%86%d8%af%d8%b3%db%8c-%d9%85%da%a9%d8%a7%d9%86%db%8c%da%a9-%d8%a8%d8%b1%d8%b1/">پایان نامه و مقاله

موضوعات: بدون موضوع  لینک ثابت
[جمعه 1399-10-19] [ 06:03:00 ب.ظ ]





تا كنون روش های ریاضی و ترمودینامیكی مختلفی برای بهینه سازی و طراحی سیستم سرویس های جانبی و انتخاب سطوح فشار خطوط اصلی بخار پیشنهاد شده است كه در سطور آینده به برخی از آنها اشاره می گردد.
یكی از مهمترین مسائل در طراحی سیستم سرویس های جانبی، انتخاب سطوح فشار خطوط اصلی بخار می باشد. در سال 1977، نیشیو برای اولین بار موضوع انتخاب سطوح بهینه فشار خط اصلی بخار را مطرح كرد و یک روش جستجوی مستقیم را كه با حل همزمان معادلات كوپل شده بود، ارائه نمود]1[.
سپس نیشیو و جانسون[1] یک روش ترمودینامیکی را پیشنهاد کردند، در این کار نیشیو و همکارانش از یک مدل LP نیز به منظور انتخاب بهینه وسایلوتجهیزات مورد استفاده در سیستمهای تولید و توزیع بخار و توان و پیش بینی هزینه حداقل سرویسهای جانبی (Utilities ) استفاده كردند. این روش تلاش می کرد وسایلی برای سرویس جانبی انتخاب کند که اتلاف انرژی در دسترس برای هر واحد را حداقل کند و گرداننده های مورد استفاده در فرایند ( Drivers ) اعم از توربینها و موتورهای الکتریکی را با بهره گرفتن از برنامه ریزی خطی (LP) بصورت بهینه مشخص كند. تجزیه و تحلیل ترمودینامیکی انرژی در دسترس، بر مبنای یک دسته از قوانین ابتکاری که برای تعیین ساختار کارخانه و شرایط طراحی به کار برده می شد، صورت می گرفت . اگر چه حداقل کردن اتلاف انرژی در دسترس به حداكثر کردن بازده کارخانه می انجامید، اما هزینه های سرمایه گذاری مربوط به واحدهای سرویس جانبی در این قسمت مورد توجه قرار نگرفته بود. همچنین یکی از نقاط ضعف چنین روشی این بود که برخی تصمیمات اصلی برای تعیین شکل کارخانه بر مبنای قوانین ابتکاری[2] بوده و در نتیجه ممكن است تعدادی از آلترناتیوهایی که شامل راه حل بهینه نیز باشند، را از دست بدهد. محدودیت مهم دیگر این بود كه هزینه های سرمایه گذاری با ظرفیت ها ، مطلقاً خطی در نظر گرفته شده بودند و بنابراین افزایش تولید به منظور سرشکن کردن هزینه سربار[3] در این مدل لحاظ نشده بود

://pipaf.ir/%d9%be%d8%a7%db%8c%d8%a7%d9%86-%d9%86%d8%a7%d9%85%d9%87-%d8%a7%d8%b1%d8%b4%d8%af-%d9%85%d9%87%d9%86%d8%af%d8%b3%db%8c-%d9%85%da%a9%d8%a7%d9%86%db%8c%da%a9-%da%af%d8%b1%d8%a7%db%8c%d8%b4-%d8%b3%d9%8a/">مقالات و پایان نامه ارشد

موضوعات: بدون موضوع  لینک ثابت
 [ 06:03:00 ب.ظ ]




:
وجود عیوب به شکل ترک ها و حفره ها در مواد کامپوزیت ناحیه هایی با تغییرات تنش زیاد ایجاد می کنند. این نواحی عمده ترین مکان برای پیدایش مد های مختلف شکست در سازه ها می باشند حتی اگر بارگذاری اعمال شده درحد متوسط باشد. بنابراین تحلیل تنش در مجاورت عیوب به عنوان اولین مرحله در فرایند طراحی ضروری است.
در مسایل الاستیسیته پاد صفحه ای استفاده از روش نابجایی پاد صفحه ای برای بدست آوردن راه حل هایی برای مسایل ترک در محیط های نامحدود یا نیمه نامحدود، یک کار معمول می باشد. این موضوع به این خاطر است که حل نابجایی همانند یک حل تابع گرین برای مسایل اصلی ترک می باشد.
تحلیل تنش در محیط های تضعیف شده توسط مجموعه ای از ترک ها و حفره ها از دیر باز مورد توجه محققین بوده است. از جمله تکنیک های موثر در تحلیل مذکور استفاده از روش توزیع نابجایی می باشد. تحقیقات انجام شده نشان داده است که از دیدگاه ریاضی ترک را می توان به صورت مجموعه ای از نابجایی ها در نظر گرفت و با بهره گرفتن از اصل جمع آثار حرکت نسبی لبه های ترک نسبت به یکدیگر و در نتیجه ضریب شدت تنش را محاسبه نمود. در حقیقت توانایی حل نابجایی در حل مسائل مکانیک شکست خطی به قدرتمندی حل گرین در حل معادلات دیفرانسیل می باشد. در این پایان نامه در ابتدا میدان تنش و تغیر مکان در مناطق متفاوت در اثر نابجایی پاد صفحه ای ولترا محاسبه می گردد تا در نهایت برای تحلیل تنش محیط های حاوی ترک و حفره مورد استفاده قرار گیرد. مناطقی که مورد بررسی قرار می گیرند عبارتند از صفحه مستطیل شکل با شرایط مرزی دو لبه آزاد و دو لبه گیر دار، صفحه مستطیل شکل با هر چهار لبه آزاد، صفحه مستطیل شکل با یک لبه آزاد و سه لبه گیر دار و صفحه مستطیل شکل با سه لبه آزاد و یک لبه گیر دار.
بعد از بدست آوردن حل نابجایی در این محیط ها میدان تنش بدون در نظر گرفتن ترک و حفره فقط در اثر بارگذاری خارجی در این محیط ها بدست می آید. از حل های بدست آمده برای تحلیل تنش در محیط های شامل ترک و حفره استفاده می شود. در مورد حفره نشان داده می شود که حفره را می توان بصورت ترک بسته و بدون تکینگی در نظر گرفت و با اعمال شرایط مناسب تنش محیطی را روی آن بدست آورد.
مسائل مربوط به صفحه مستطیل شکل عبارتند از :
تحلیل یک ترک مستقیم احاطه شده، تحلیل دو ترک مستقیم احاطه شده و یک حفره بیضوی، تحلیل یک ترک مستقیم احاطه شده و یک ترک مستقیم لبه ای به همراه یک حفره بیضوی
هر یک از مثال های فوق یکبار برای صفحه مستطیل شکل با دو لبه آزاد و دو لبه گیر دار، صفحه مستطیل شکل با یک لبه آزاد و سه لبه گیر دار و نیز صفحه مستطیل شکل با سه لبه آزاد و یک لبه گیر دار که شرایط بار گذاری یکسانی دارند، حل شده اند و یکبار نیز برای صفحه مستطیل شکل با چهار لبه آزاد که شرایط بار گذاری آن با سه حالت مذکور متفاوت است، حل شده اند.
برای مقایسه جواب های بدست آمده با مراجع موجود، مسئله یک صفحه مستطیل شکل با هر چهار لبه آزاد که توسط دو ترک مستقیم و یک حفره بیضوی تضعیف شده است حل گردید. پس از میل دادن طول صفحه مستطیل شکل با هر چهار لبه آزاد به بی نهایت و اعمال شرایط بارگذاری یکسان، حل بدست آمده برای صفحه مستطیل شکل با هر چهار لبه آزاد با حل بدست آمده برای باریکه دقیقا مطابقت داشت.

مقالات و پایان نامه ارشد


شرایط بارگذاری برای صفحات مستطیل شکل که چهار لبه آن آزاد نیست بصورت نقطه ای روی لبه بالایی صفحه مستطیل شکل می باشد و برای صفحه مستطیل شکل با هر چهار لبه آزاد بصورت چهار بار نقطه ای که شرایط خود تعادلی صفحه مستطیل شکل را ارضا می کنند، می باشد.

موضوعات: بدون موضوع  لینک ثابت
 [ 06:02:00 ب.ظ ]




تئوری های گرادیان كرنشی و غیر محلی ارینگن

­ای بر نانوفناوری
فناوری نانو واژه­ای است کلی که به تمام فناوری­های پیشرفته در عرصه کار با مقیاس نانو اطلاق می­ شود. نانو، کلمه­ای یونانی است و به معنی کوتوله که در ریاضیات معادل ، یعنی یک میلیاردم است ودر فناوری نانو ابعادی در حدود 1 تا nm 100 را شامل می­ شود. علم و فناوری نانو، هنر وتوانایی به دست گرفتن کنترل ماده در ابعاد نانو و علم دستکاری و بازچینی اتم­ها برای ساخت مواد و ابزارها در مقیاس نانو متر است.  در این فناوری ساخت ابزار و اشیا در اندازه­ های اتمی است و ملکول به ملکول توسط رباتهای برنامه ­ریزی شده در مقیاس نانومتریک انجام می­ شود. در این فناوری خواص جدیدی از مواد متاثر از غلبه خواص کوانتومی بر خواص کلاسیک به کار برده می­ شود. نانو فناوری در واقع رویکرد جدیدی در تمام عرصه ­هاست ویک علم فرا رشته­ای است که تمام علوم را در بر می­گیرد و می­توان گفت نقطه اتصال علوم در آینده می­باشد. در بیان اهمیت این فناوری گفته می­ شود که بخشی از آینده نیست بلکه تمام آینده است.
استفاده از فناوری نانو ناخواسته به چند صد سال پیش بر می­گردد. جام لیکورگوس که در موزه بریتانیا در لندن نگهداری می­ شود یک نمونه استفاده از این فناوری در گذشته است که به قرن چهارم بعد از میلاد برمی­گردد. نکته جالب در این جام این است که تابش نور از بیرون به جام، آن را سبز رنگ کرده  و با تابش نور از درون آن به رنگ قرمز در می­آید. مطالعات میکروسکوپی پرده از راز این جام برداشته ومعلوم شده است که در درون شیشه این جام، ذرات نانو از جنس طلا و نقره قرار دارد و ذرات نانو، خواصی متفاوت از ذرات غیر نانو بروز دهند.
پیشرفت فناوری نانو با اختراع میکروسکوپهای الکترونی وارد فاز جدیدی شد. در سال 1931 دانشمند آلمانی ماکس­نات و ارنست روسک اولین نوع از این میکروسکوپ­ها را اختراع کردند. واروین مولر پروفسور فیزیک دانشگاه ایالت پن با اختراع میکروسکوپ الکترونی با زمینه یونی، اولین فرد در تاریخ بود که اتم­ها را به صورت منحصر به فرد و ترتیب آن­ها در یک سطح مشاهده نمود.
با وجود تلاش­ های انجام شده، فاینمن فیزیکدان و دارنده جایزه نوبل فیزیک را به عنوان پایه­گذار فناوری نانو می­شناسند. وی در سال 1959 مقاله­ای درباره قابلیت­های این فناوری در آینده منتشر ساخت. وی در در مراسم میهمانی بعد از دریافت جایزه نوبل، در سخنرانی خود ایده فناوری نانو را برای عموم آشکار ساخت و معتقد بود که در اندازه­ های بسیار کوچک، فضایی بسیار بزرگ وجود دارد. وی معتقد بود که در آینده نزدیک موتورهایی به بزرگی سر سوزن ساخته خواهد شد.
بعد از این سال فعالیت در عرصه نانو رشد چشمگیری را شروع کرد. در سال 1980 در مرکز تحقیقاتی IBM در سوییس تکنیکی ابداع شد که تصویر اتم را بزرگ می­کرد. در 1990 برای اولین بار دانشمندان اتم­ها را حرکت دادند و با اتم­ها اولین جمله را نوشتند. با فناوری نانو انسان اکنون می ­تواند جهان ماده را آن­طور که خودش می­خواهد بسازد. تنها کافی است مواد پایه­ای جهان ماده را یک بار دیگر اتم به اتم و ملکول به ملکول کنار هم بچیند.به قول هرست استومر برنده جایزه نوبل: “ظهور نانو تکنولوژی می ­تواند به بشر تسلط لازم برای کنترل بی­سابقه و کم­نظیر بر جهان ماده را بدهد.”

مقالات و پایان نامه ارشد

موضوعات: بدون موضوع  لینک ثابت
 [ 06:02:00 ب.ظ ]





در این پایان نامه ما به ارائه سنتز بهینه ابعادی مکانیزم شش میله­ای با قیدهای دورانی می­پردازیم. هدف از سنتز، تولید مسیر به گونه­ ای است که تا حد امکان به مسیر مطلوب نزدیک­تر باشد. از زنجیره­های شش میله­ای، با هفت اتصال چرخشی، شناخته شده با یک درجه آزادی می­توان زنجیره وات و استفن­سون را نام برد. دو نوع مکانیزم از زنجیره وات و سه نوع مکانیزم از زنجیره استفن­سون حاصل می­ شود که معرفی و چند کاربرد آنها در فصل 2 پایان نامه آورده شده است.
به منظور سنتز بهینه تک هدفه مکانیزم، با در نظر گرفتن تابع خطای مسیر به عنوان تابع هدف، ترکیب الگوریتم ژنتیک و روش تجمعی ذره مورد استفاده قرار گرفته شده است و دقت نتایج خطای مسیر با آخرین نتایج در مقالات مقایسه می­ شود. الگوریتم چند هدفه NSGAII برای کمینه سازی همزمان دو تابع هدف مورد استفاده قرار می­گیرد. دو تابع هدف با رفتار متضاد در نظر گرفته شده در این کار عبارتند از تابع خطای مسیر و انحراف زاویه انتقال از . در بهینه­­سازی دو هدفه با بکارگیری متد کاهش کنترل­ شده انحراف مجاز زاویه انتقال سرعت همگرائی تابع خطا را بالا برده و سعی در بدست آوردن جبهه پارتوئی مناسب می­ شود.
پیشگفتار
مکانیزم یک ابزار مکانیکی است که به منظور انتقال حرکت و یا نیرو از یک منبع به یک خروجی بکار می­رود. یک اهرم بندی تشکیل شده است از اهرم­ها (یا میله­ها) که به طور عمومی صلب در نظر گرفته می­شوند و توسط اتصالاتی از قبیل پین (لولا) یا لغزنده­های منشوری بطوری که زنجیره­های (حلقه­های) باز یا بسته را می­سازند، به یکدیگر وصل می­شوند. این چنین زنجیره­های سینماتیکی که حداقل یک اهرم آن ثابت و حداقل دو اهرم دیگر متحرک باقی بماند، مکانیزم نام دارد و اگر کلیه اهرم ها ثابت باشند، آنگاه سازه نامیده می­ شود. به عبارت دیگر مکانیزم اجازه می­دهد اهرم­های “صلب” آن نسبت به یکدیگر حرکت داشته باشند. در حالی که برای سازه این چنین نیست.
زنجیره­های سینماتیکی بخش مهم از مکانیزم­ ها هستند که تحقیقات در زمینه آنها به دو بخش 1- آنالیز و 2- سنتز تقسیم می­ شود.

    • آنالیز: فرایند بررسی حرکت همه اعضا و یا بعضی از اعضای زنجیره بر اساس پارامترهای هندسی مکانیزم می­باشد.
  • سنتز: پیدا کردن یک مکانیزم که بتواند یک حرکت معین یا مسیر دلخواه را ایجاد نماید.

بطور­کلی، سنتز مکانیزم­ ها به سه بخش متفاوت: 1- سنتز نوع 2-سنتز عددی 3-سنتز ابعادی تقسیم می گردد. دو سنتز اول مربوط به نوع مکانیزم و تعداد اعضای مورد نیاز برای حرکت مکانیکی بخصوص هستند. در حالی که هدف از سنتز ابعادی پیدا کردن همه پارامتر­های ابعادی یک مکانیزم برای ایجاد حرکت دلخواه می­باشد. هدف ما در این تحقیق سنتز ابعادی برای یک مسیر مورد نظر می­باشد.
در بررسی ابعادی سه مسئله مهم مورد بررسی قرار می­گیرد که عبارتند از:

پایان نامه و مقاله

    • تولید ابعاد: هدف پیدا کردن مکانیزم برای ایجاد یک دسته از زوج­ها و خروجی معین می­باشد.
    • تولید مسیر: هدف پیدا نمودن یک مکانیزم برای عبور عضو واسط از نقاط معین است.
  • هدایت جسم صلب: هدف پیدا نمودن مکانیزم برای عبور عضو واسط از موقعیت­های معین شده برای آن، بعنوان یک جسم صلب است.

برای سنتز یک مکانیزم گاهی از روش­های دقیق و گاهی از روش های تقریبی استفاده می­گردد. سنتز دقیق به معنی حل معادلات حاکم بر مسئله به صورت دقیق می­باشد و در سنتز تقریبی هدف حداقل کردن خطا برای این معادلات می­باشد که سنتز بهینه اختصاص به این روش دارد.

موضوعات: بدون موضوع  لینک ثابت
 [ 06:01:00 ب.ظ ]